12 ноября 2022 г. 20:23:00
Решаем задания пособия 36 вариантов ЕГЭ 2023 ФИПИ школе Ященко
11 мая 2023 г. 18:50:00
Публикуем решения Тренировочной работы №2 по математике 10-11 класс
🔥
6 апреля 2023 г. 20:23:00
Разбор пробного ЕГЭ профильного уровня Москва 06-04-2023

Подобие треугольников cтраница 1


Skip Navigation Links > Математика > Геометрия > Планиметрия > Теоремы планиметрии > Подобие треугольников

Применить фильтр по условиям
К первой страницеК предыдущей страницеСтраница 1 из 26 (Кол-во задач:251)[1]23426К следующей страницеК последней странице
Очистить все фильтры
ID 
Условие задачи 
Примечание 
Open filter row popup menu
Open filter row popup menu
Open filter row popup menu
 
3779Дан ромб ABCD. Прямая, перпендикулярная стороне AD, пересекает его диагональ AC в точке M, диагональ BD - в точке N, причем AM : MC = 1 : 2, BN : ND = 1 : 3. а) Докажите, что cos∠BAD = 0,2. б) Найдите площадь ромба, если MN=5
Решение
Дан ромб ABCD. Прямая, перпендикулярная стороне AD, пересекает его диагональ AC в точке M ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 16 # Два способа решения...X
3762Диагонали AC и BD четырёхугольника ABCD, вписанного в окружность, пересекаются в точке P, причём BC=CD. а) Докажите, что AB : BC = AP : PD. б) Найдите площадь треугольника COD, где O - центр окружности, вписанной в треугольник ABD, если дополнительно известно, что BD - диаметр описанной около четырёхугольника ABCD окружности, AB=6, а BC=6sqrt2
Решение
Диагонали AC и BD четырёхугольника ABCD, вписанного в окружность, пересекаются в точке P, причём BC=CD ! Тренировочная работа №2 по математике 10 класс Статград 11-05-2023 Вариант МА2200309 Задание 16...X
3747В треугольнике ABC проведены биссектрисы BM и CN. Оказалось, что точки B, C, M и N лежат на одной окружности. а) Докажите, что треугольник ABC равнобедренный. б) Пусть P — точка пересечения биссектрис треугольника ABC. Найдите площадь четырёхугольника AMPN , если MN : BC = 3:7, а BN=6
Решение
В треугольнике ABC проведены биссектрисы BM и CN. Оказалось, что точки B, C, M и N лежат на одной окружности ! Статград Тренировочная работа №5 по математике 27-04-2023 11 класс Вариант МА2210509 Задание 16 # Приведенорешениеcolor{blue} text{Приведено решение 1797} задачи- аналога   1797  ...X
3741Все боковые рёбра четырехугольной пирамиды SABCD равны AD - стороне основания ABCD. Стороны AB, BC и CD вдвое меньше стороны AD. a) Докажите, что высота пирамиды, опущенная из вершины S, проходит через середину AD. б) В каком отношении, считая от точки S, плоскость BNM делит высоту пирамиды, если N - середина SC, в точка M делит ребро SD в отношении 1 : 3, считая от точки S
Решение
Все боковые рёбра четырехугольной пирамиды SABCD равны AD - стороне основания ABCD ! Досрочный ЕГЭ 2023 по математике (резервный день) 19-04-2023 Задание 13...X
3737В треугольник ABC угол C=90°, СВ ┴ AB. В треугольник BCD и в треугольник ACD вписаны окружности с r1=4 и r2=3 соответственно. Найти радиус вписанной в треугольник ABC окружности
Решение
В треугольник ABC угол C=90°, СВ ┴ AB. В треугольник BCD и в треугольник ACD вписаны окружности ! Найти радиус вписанной в треугольник ABC окружности...X
3690Дан тетраэдр ABCD. Точки K, L, M и N лежат на ребрах AC, AD, DB и BC соответственно, так, что четырехугольник KLMN квадрат со стороной 2. AK:KC = 2 : 3. a) Докажите, что BM:MD = 2 : 3. б) Найдите расстояние от точки С до плоскости KLMN, если объем тетраэдра равен 25
Решение
Дан тетраэдр ABCD. Точки K, L, M и N лежат на ребрах AC, AD, DB и BC соответственно, так, что четырехугольник KLMN квадрат со стороной 2. AK:KC = 2 : 3 ! Досрочный ЕГЭ по математике 27-03-2023 Задание 13...X
3660На сторонах AB и AD параллелограмма ABCD взяты точки M и N так, что прямые MC и NC разбивают параллелограмм на 3 равновеликие части. BD=d. Найти MN
Решение
На сторонах AB и AD параллелограмма ABCD взяты точки M и N так, что прямые MC и NC разбивают параллелограмм на 3 равновеликие части...X
3657На сторонах AB и BC треугольника ABC взяты точки M и K так, что угол MKB равен углу A. Отрезок BO - биссектриса треугольника MBK, MO=2, OK=3. Найти BC:AB
Решение
На сторонах AB и BC треугольника ABC взяты точки M и K так, что угол MKB равен углу A...X
3655Площадь трапеции ABCD равна 30. Точка Р – середина боковой стороны АВ. Точка R на боковой стороне CD выбрана так, что 2CD=3RD. Прямые AR и PD пересекаются в точке Q , AD=2BC. a) Докажите, что точка Q – середина отрезка AR б) Найдите площадь треугольника APQ
Решение
Площадь трапеции ABCD равна 30. Точка Р – середина боковой стороны АВ. Точка R на боковой стороне CD выбрана так, что 2CD=3RD ! Тренировочный вариант 221 от Ларина Задание 16 # Решение пункта Б...X
3631В прямоугольнике ABCD диагонали пересекаются в точке O, а угол BDC равен 75°. Точка P лежит вне прямоугольника, а угол APB равен 150°. а) Докажите, что углы BAP и POB равны. б) Прямая PO пересекает сторону CD в точке F. Найдите CF, если AP=6sqrt3 и BP=4
Решение
В прямоугольнике ABCD диагонали пересекаются в точке O, а угол BDC равен 75° ! 36 вариантов ФИПИ Ященко 2023 Вариант 25 Задание 16 # Задача-аналог   2559  ...X
К следующей страницеПоказать ещё...
Показана страница 1 из 26
Show filter builder dialog Clear
X