Подобие треугольников

Показаны 20 из 288 задач

?
В это поле можно ввести текст для поиска по вхождению полной подстроки:
Например:
пирам - будут найдены все условия задач, содержащие слова "пирамида", "Пирамиду","пирамиды" и тд.
треугольной пирамиды - будут найдены все условия задач, содержащие точную подстроку "треугольной пирамиды"
log - будут найдены все условия задач с логарифмами.
Надо иметь ввиду, что фильтрация будет происходить по текущему разделу.
Если необходимо найти более сложные строки, например, содержащие одновременно слова "Объём" "треугольной" "середины" "рёбер" нужно воспользоваться расширенным режимом поиска - сменив опцию "Содерж" на % из списка. Символ подстановки % соответствует любому количеству любых символов. Далее вводим текст %Объём%треуг%серед%бер% и примененяем фильтр, нажав ENTER (или жёлтую кнопку "Применить фильтр по условиям")
Прямая, перпендикулярная стороне BC ромба ABCD, пересекает его диагональ AC в точке M, а диагональ BD - в точке N, причем AM : MC = 1 : 2, BN : ND = 1 : 3. а) Докажите, что прямая MN делит сторону ромба BC в отношении 1:4. б) Найдите сторону ромба, если MN=sqrt12
Прямая, перпендикулярная стороне BC ромба ABCD, пересекает его диагональ AC в точке M, а диагональ BD - в точке N ! ФИПИ школе 2025 ЕГЭ Ященко 36 вариантов профильный уровень Вариант 11 Задание 17 # Задача-аналог   3779  
Точки P, Q , W делят стороны выпуклого четырёхугольника ABCD в отношении AP : PB = CQ:QB = CW:WD =1:3. В треугольнике PQW угол W острый, при этом радиус описанной около этого треугольника окружности равен 5/4, PQ = 2 , QW = 3/2. а) Докажите, что треугольник PQW прямоугольный. б) Найдите площадь четырёхугольника ABCD
Точки P, Q , W делят стороны выпуклого четырёхугольника ABCD в отношении AP : PB = CQ:QB = CW:WD ! Статград Тренировочная работа №3 по математике 11 класс 11-02-2025 Задание 17
Периметр треугольника АВС равен 24. На сторонах АВ и ВС отмечены точки E и F соответственно так, что BE:EA = BF:FC=3:1. Прямая EF касается окружности, вписанной в треугольник. а) Докажите, что АС=3. б) Найдите площадь треугольника АВС, если ∠ACB=90°
Периметр треугольника АВС равен 24. На сторонах АВ и ВС отмечены точки E и F соответственно ! СтатГрад Тренировочная работа №1 10 класс 04-02-2025 Вариант МА2400109 Задание 14 # Задача-аналог   4327  
На ребре AA1 прямоугольного параллелепипеда ABCDA1B1C1D1 взята точка E так, что A1E : EA = 3 : 1, а на ребре BB1 - точка F так, что B1F : FB = 3 : 5. Известно, что AB=5sqrt2, AD=12, A A1=16. а) Докажите, что плоскость EFD1 делит ребро B1C1 на два равных отрезка. б) Найдите угол между плоскостью EFD1 и плоскостью AA1B1
На ребре AA1 прямоугольного параллелепипеда ABCDA1B1C1D1 взята точка E так, что A1E : EA = 3 : 1. Известно, что AB=5sqrt2, AD=12, AA1=16 ! СтатГрад Тренировочная работа №1 10 класс 04-02-2025 Вариант МА2400109 Задание 14 # Задача-аналог   3217  
Основанием пирамиды SABCD является квадрат ABCD, ребро SA является высотой пирамиды. На рёбрах BC, СD и SC соответственно отмечены точки K, N и F так, что BK:KC = CN:ND = 3:1, CF:FS = 3:13. a) Докажите, что прямая AS параллельна плоскости FNK. б) Найдите объём пирамиды SFNK, если AB = AS = 8
Основанием пирамиды SABCD является квадрат ABCD, ребро SA является высотой пирамиды ! ФИПИ школе 2025 ЕГЭ Ященко 36 вариантов профильный уровень Вариант 6 Задание 14 # Задача-аналог   4585  
Основанием пирамиды SABCD является квадрат ABCD, ребро SA является высотой пирамиды. На рёбрах BC, СD и SC соответственно отмечены точки K, N и F так, что BK : KC = CN : ND = 1 : 2, CF : FS = 2 : 7. a) Докажите, что плоскость ABC перпендикулярна плоскости FNK. б) Найдите объём пирамиды AFNK, если AB = AS = 6
Найдите объём пирамиды AFNK, если AB = AS = 6 ! ФИПИ школе 2025 ЕГЭ Ященко 36 вариантов профильный уровень Вариант 5 Задание 14 # Задача-аналог   4586  
Расстояние от середины высоты правильной четырёхугольной пирамиды до боковой грани равно √2, а для бокового ребра - √3. Найдите объём пирамиды
Расстояние от середины высоты правильной четырёхугольной пирамиды до боковой грани равно √2 ! ДВИ в МГУ 2024 - Вариант 246 6-го потока 21-07-2024, Задание 7
На биссектрисе AL треугольника ABC отмечена точка M. Пусть A', B', C' – точки пересечения окружности, описанной около треугольника ABC, с прямыми AM, BM, CM соответственно, отличные от точек A, B, C. Пусть P – точка пересечения отрезков AB и A'C' и пусть Q – точка пересечения отрезков AC и A'B'. Найдите отношение площади треугольника ABC к площади треугольника APQ, если известно, что BC : PQ = 3
На биссектрисе AL треугольника ABC отмечена точка M. Пусть A', B', C' – точки пересечения окружности ! ДВИ в МГУ 2024 - 7 поток (резервный день), Вариант 247 Задание 5
В четырёхугольнике ABCD ВС=1, AD=7. На отрезках AB и CD отмечены соответственно точки E и F, такие что - четырёхугольники EBCF и AEFD вписанные и равновеликие. Найдите EF
В четырёхугольнике ABCD ВС=1, AD=7 ! Найдите EF
В правильном тетраэдре ABCD точки М и N - середины ребер АВ и CD соответственно. Плоскость α параллельна прямым АВ и CD и пересекает прямую MN в точке К. а) Докажите, что плоскость α перпендикулярна прямой MN. б) Пусть плоскость α пересекает ребро AC в точке L. Найдите длину отрезка AL, если известно, что MК=1, КN=2
В правильном тетраэдре ABCD точки М и N - середины ребер АВ и CD соответственно. Плоскость α параллельна прямым АВ и CD и пересекает прямую MN в точке К ! ЕГЭ по математике 05.07.2024 (день пересдачи) профильный уровень Задание 14
В основании четырёхугольной пирамиды ABCDT лежит параллелограмм ABCD. Известно, что в пирамиду вписан шар с центром O радиуса 1, причём высота пирамиды TH проходит через точку O. Какой наименьший объём может иметь такая пирамида?
В основании четырёхугольной пирамиды ABCDT лежит параллелограмм ABCD. Известно, что в пирамиду вписан шар ! Пробный ДВИ МГУ 2024 ФКИ Задание 7
В треугольнике АВС длина стороны AC равна 6. Точки E и F - середины сторон АВ и ВС соответственно. Отрезок EF касается окружности, вписанной в треугольник АВС. а) Докажите, что периметр треугольника ABC равен 24. б) Найдите площадь четырёхугольника АEFС, если ∠АСВ=90°
В треугольнике АВС длина стороны AC равна 6. Точки E и F - середины сторон АВ и ВС соответственно. Отрезок EF касается окружности ! ЕГЭ по математике 05.07.2024 (день пересдачи) профильный уровень Задание 17
На сторонах BC и CD квадрата ABCD отмечены точки E и K соответственно. Известно, что AE=3, EK=1, AK=sqrt10. а) Докажите, что CK =1/3BE. б) Найдите площадь четырехугольника ABCK
На сторонах BC и CD квадрата ABCD отмечены точки E и K соответственно ! ЕГЭ по математике 05.07.2024 (день пересдачи) профильный уровень Задание 17
В правильной четырехугольной пирамиде SABCD с основанием ABCD точка O - центр основания пирамиды, точка M - середина ребра SC, точка K делит ребро BC в отношении BK:KC=3:2, а AB=4 и SO=2sqrt23. а) Докажите, что плоскость OMK параллельна прямой SA. б) Найдите длину отрезка, по которому плоскость OMK пересекает грань SAD
В правильной четырехугольной пирамиде SABCD с основанием ABCD точка O - центр основания пирамиды, точка M - середина ребра SC ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 14
В правильном тетраэдре ABCD точки M и N – середины ребер AB и CD соответственно. Плоскость α перпендикулярна прямой MN и пересекает ребро BC в точке K. а) Докажите, что прямая MN перпендикулярна ребрам AB и CD. б) Найдите площадь сечения тетраэдра ABCD плоскостью α, если известно, что BK=1, KC=5
В правильном тетраэдре ABCD точки M и N – середины ребер AB и CD соответственно ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 14
В треугольнике ABC с тупым углом ACB проведена высота CH. Окружность с центром H и радиусом HC второй раз пересекает стороны AC и BC в точках M и N соответственно, CD - диаметр этой окружности. а) Докажите, что ∠MDN = ∠CAB + ∠ABC. б) Найдите длину отрезка MN, если AB =16sqrt2, CM : MA = 5: 9 и CN : NB = 5 : 7
В треугольнике ABC с тупым углом ACB проведена высота CH. Окружность с центром H и радиусом HC второй раз пересекает стороны AC и BC в точках M и N соответственно ! СтатГрад Тренировочная работа № 5 по математике 11 класс 24-04-2024 Вариант МА2310509 Задание 17
Медиана BM равнобедренного треугольника ABC (AB=AC) является диаметром окружности, которая второй раз пересекает основание BC в точке K. а) Докажите, что отрезок BK втрое больше отрезка CK. б) Пусть указанная окружность пересекает сторону AB в точке N. Найдите длину стороны AB, если BK=18 и BN=17
Медиана BM равнобедренного треугольника ABC является диаметром окружности, которая второй раз пересекает основание BC в точке K ! Досрочный ЕГЭ резервный день 18-04-2024 профильный уровень Задание 17
В кубе ADCDA1B1C1D1 все рёбра равны 3. На ребре BB1 отмечена точка K так, что KB=2. Через точки K и C1 проведена плоскость альфа, параллельная BD1. а) Докажите, что плоскость альфа проходит через середину A1B1. б) Найдите угол наклона плоскости альфа к плоскости грани BB1C1C
В кубе ADCDA1B1C1D1 все рёбра равны 3. На ребре BB1 отмечена точка K так, что KB=2 ! Досрочный ЕГЭ резервный день 18-04-2024 профильный уровень Задание 14 Центр, Восток # Задача-аналог   427  
В правильной треугольной пирамиде SABC боковое ребро AS равно 3sqrt10, а высота SH пирамиды равна 5sqrt2. Точка M - середина ребра BC, а AT - высота пирамиды, проведённая к грани SBC. а) Докажите, что точка T является серединой отрезка SM. б) Найдите расстояние между прямыми AT и SB
В правильной треугольной пирамиде SABC боковое ребро AS равно 3sqrt10, а высота SH пирамиды равна 5sqrt2 ! ЕГРК 11 класс Москва 05-04-2024 Задание 14
Дан остроугольный треугольник ABC. В нём высоты BB1 и CC1 пересекаются в точке Н. а) Докажите, что ∠BAH =∠BB1C1. б) Найдите расстояние от центра описанной окружности до BC, если C1B1=18, а ∠BAC = 30°
Дан остроугольный треугольник ABC. В нём высоты BB1 и CC1 пересекаются в точке Н. а) Докажите, что ∠BAH =∠BB1C1 ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 17
Загрузка...
Новое на сайте
28/03/2025 21:00 Досрочный ЕГЭ по математике 2025 🔥
Досрочный ЕГЭ по математике 2025 🔥
Задания вариантов ЕГЭ профильного уровня досрочной волны 28 марта 2025 года с решениями
16/03/2025 09:05 Тренажёр первой части ЕГЭ
Тренажёр первой части ЕГЭ
Решайте на время задания первой части ЕГЭ профильного уровня по математике NEW
26/02/2025 12:15 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
К началу страницы