| | | |
| |
3599 | В правильной шестиугольной пирамиде SABCDEF сторона основания AB равна 2, а боковое ребро SA равно 8. Точка M - середина ребра AB. Плоскость альфа перпендикулярна плоскости ABC и содержит точки M и D. Прямая SC пересекает плоскость альфа в точке K.
а) Докажите, что KM=KD.
б) Найдите объём пирамиды CDKM
Решение | В правильной шестиугольной пирамиде SABCDEF сторона основания AB равна 2, а боковое ребро SA равно 8. Точка M - середина ребра AB ! 36 вариантов ФИПИ Ященко 2023 Вариант 21 Задание 13 |   |
|
3578 | Доказать, что в остроугольном треугольнике отрезок, соединяющий основания высот, опущенных на стороны угла A, отсекает от треугольника ABC треугольник подобный ему с коэффициентом подобия k=cosA
Решение | В остроугольном треугольнике отрезок, соединяющий основания высот, отсекает от треугольника ABC треугольник подобный ему ! Коэффициент подобия k=cosA |   |
|
3568 | Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются
в точке H.
а) Докажите, что ∠BB1C1 = ∠BAH.
б) Найдите расстояние от центра окружности, описанной около треугольника ABC, до стороны BC, если B1C1=9 и ∠BAC = 60°
Решение | Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются
в точке H. а) Докажите, что ∠BB1C1 = ∠BAH ! Тренировочная работа по математике №2 СтатГрад 11 класс 13.12.2022 Задание 16 Вариант МА2210209
|   |
|
3545 | Грань ABCD прямоугольного параллелепипеда ABCDA1B1C1D1 является вписанной в основание конуса, а сечением конуса плоскостью A1B1C1 является круг, вписанный в четырёхугольник A1B1C1D1; AB=a, AA1=.
а) Высота конуса равна h. Докажите, что 4,5a < h < 5a.
б) Найдите угол между плоскостями ABC и SD1C, где S - вершина конуса
Решение | Грань ABCD прямоугольного параллелепипеда ABCDA1B1C1D1 является вписанной в основание конуса, а сечением конуса плоскостью A1B1C1 является круг, вписанный в четырёхугольник A1B1C1D1 ! 36 вариантов ФИПИ Ященко 2023 Вариант 10 Задание 13 |   |
|
3535 | Грань ABCD куба ABCDA1B1C1D1 является вписанной в основание конуса, а сечением конуса плоскостью A1B1C1 является круг, вписанный в четырёхугольник A1B1C1D1.
а) Высота конуса равна h, ребро куба равно a. Докажите, что 3a < h < 3,5a.
б) Найдите угол между плоскостями ABC и SA1D, где S - вершина конуса
Решение | Грань ABCD куба ABCDA1B1C1D1 является вписанной в основание конуса, а сечением конуса плоскостью A1B1C1 является круг, вписанный в четырёхугольник A1B1C1D1 ! 36 вариантов ФИПИ Ященко 2023 Вариант 9 Задание 13 |   |
|
3527 | Сторона основания правильной четырёхугольной пирамиды SABCD относится к боковому ребру как . Через вершину D проведена плоскость α, перпендикулярная боковому ребру SB и пересекающая его в точке M.
а) Докажите, что сечение пирамиды SABCD плоскостью альфа - это четырёхугольник, диагонали которого перпендикулярны.
б) Найдите площадь этого сечения, если боковое ребро пирамиды равно 6
Решение | Докажите, что сечение пирамиды SABCD плоскостью альфа - это четырёхугольник, диагонали которого перпендикулярны ! 36 вариантов ФИПИ Ященко 2023 Вариант 8 Задание 13 |   |
|
3524 | В треугольнике АВC точки К и N – середины сторон АВ и АС соответственно. Через вершину В проведена прямая, которая пересекает сторону АС в точке F, а отрезок КN в точке L так, что KL:LN=3:2. Определить площадь четырехугольника AKLF, если площадь треугольника АВС равна 40
Решение | В треугольнике АВC точки К и N – середины сторон АВ и АС соответственно. Через вершину В проведена прямая, которая пересекает сторону АС в точке F ! Определить площадь четырехугольника AKLF, если площадь треугольника АВС равна 40 |   |
|
3479 | В основании пирамиды SABCD лежит трапеция ABCD, с большим основанием AD. Диагонали трапеции пересекаются в точке O. Точки M и N - середины боковых сторон AB и CD соответственно. Плоскость α проходит через точки M и N параллельно прямой SO.
а) Докажите, что сечение пирамиды SABCD плоскостью α является трапецией.
б) Найдите площадь сечения пирамиды SABCD плоскостью α, если AD=9, BC=7, SO=6, а прямая SO перпендикулярна прямой AD
Решение | В основании пирамиды SABCD лежит трапеция ABCD, с большим основанием AD ! 36 вариантов ФИПИ Ященко 2023 Вариант 1 Задание 13 # ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 13 Санкт-Петербург, Центр # Задачи-Аналоги 3357 3361 |   |
|
3477 | В параллелограмме ABCD угол ВАС вдвое больше угла CAD. Биссектриса угла BAC пересекает отрезок BC в точке L. На продолжении стороны CD за точку D выбрана такая точка E, что AE=CE.
а) Докажите, что AL:BC=AB:BC.
б) Найдите EL, если
Решение | В параллелограмме ABCD угол ВАС вдвое раза больше угла CAD ! 36 вариантов ФИПИ Ященко 2023 Вариант 1 Задание 16 # ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 16 Санкт-Петербург, Центр # Задача-Аналог 3356 |   |
|
3461 | В правильной шестиугольной пирамиде SABCDEF сторона основания AB = 4, а боковое ребро SA = 7. Точка M лежит на ребре BC, причем BM = 1, точка K лежит на ребре SC, причем SK = 4.
а) Докажите, что плоскость MKD перпендикулярна плоскости основания пирамиды.
б) Найдите объем пирамиды CDKM
Решение | В правильной шестиугольной пирамиде SABCDEF сторона основания AB = 4, а боковое ребро SA = 7 ! Тренировочный вариант 397 от Ларина Задание 13 |   |
|