Подобие треугольников

Показаны 20 из 273 задач

?
В это поле можно ввести текст для поиска по вхождению полной подстроки:
Например:
пирам - будут найдены все условия задач, содержащие слова "пирамида", "Пирамиду","пирамиды" и тд.
треугольной пирамиды - будут найдены все условия задач, содержащие точную подстроку "треугольной пирамиды"
log - будут найдены все условия задач с логарифмами.
Надо иметь ввиду, что фильтрация будет происходить по текущему разделу.
Если необходимо найти более сложные строки, например, содержащие одновременно слова "Объём" "треугольной" "середины" "рёбер" нужно воспользоваться расширенным режимом поиска - сменив опцию "Содерж" на % из списка. Символ подстановки % соответствует любому количеству любых символов. Далее вводим текст %Объём%треуг%серед%бер% и примененяем фильтр, нажав ENTER (или жёлтую кнопку "Применить фильтр по условиям")
В треугольнике ABC с тупым углом ACB проведена высота CH. Окружность с центром H и радиусом HC второй раз пересекает стороны AC и BC в точках M и N соответственно, CD - диаметр этой окружности. а) Докажите, что ∠MDN = ∠CAB + ∠ABC. б) Найдите длину отрезка MN, если AB =16sqrt2, CM : MA = 5: 9 и CN : NB = 5 : 7
В треугольнике ABC с тупым углом ACB проведена высота CH. Окружность с центром H и радиусом HC второй раз пересекает стороны AC и BC в точках M и N соответственно ! СтатГрад Тренировочная работа № 5 по математике 11 класс 24-04-2024 Вариант МА2310509 Задание 17
Медиана BM равнобедренного треугольника ABC (AB=AC) является диаметром окружности, которая второй раз пересекает основание BC в точке K. а) Докажите, что отрезок BK втрое больше отрезка CK. б) Пусть указанная окружность пересекает сторону AB в точке N. Найдите длину стороны AB, если BK=18 и BN=17
Медиана BM равнобедренного треугольника ABC является диаметром окружности, которая второй раз пересекает основание BC в точке K ! Досрочный ЕГЭ резервный день 18-04-2024 профильный уровень Задание 17
В кубе ADCDA1B1C1D1 все рёбра равны 3. На ребре BB1 отмечена точка K так, что KB=2. Через точки K и C1 проведена плоскость альфа, параллельная BD1. а) Докажите, что плоскость альфа проходит через середину A1B1. б) Найдите угол наклона плоскости альфа к плоскости грани BB1C1C
В кубе ADCDA1B1C1D1 все рёбра равны 3. На ребре BB1 отмечена точка K так, что KB=2 ! Досрочный ЕГЭ резервный день 18-04-2024 профильный уровень Задание 14 Центр, Восток # Задача-аналог   427  
В правильной треугольной пирамиде SABC боковое ребро AS равно 3sqrt10, а высота SH пирамиды равна 5sqrt2. Точка M - середина ребра BC, а AT - высота пирамиды, проведённая к грани SBC. а) Докажите, что точка T является серединой отрезка SM. б) Найдите расстояние между прямыми AT и SB
В правильной треугольной пирамиде SABC боковое ребро AS равно 3sqrt10, а высота SH пирамиды равна 5sqrt2 ! ЕГРК 11 класс Москва 05-04-2024 Задание 14
Дан остроугольный треугольник ABC. В нём высоты BB1 и CC1 пересекаются в точке Н. а) Докажите, что ∠BAH =∠BB1C1. б) Найдите расстояние от центра описанной окружности до BC, если C1B1=18, а ∠BAC = 30°
Дан остроугольный треугольник ABC. В нём высоты BB1 и CC1 пересекаются в точке Н. а) Докажите, что ∠BAH =∠BB1C1 ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 17
На стороне BC ромба ABCD отметили точку E так, что BE:EC=1:4. Через точку E перпендикулярно BC провели прямую, которая пересекает диагонали BD и AC в точках R и M соответственно, при этом BR:RD=1:3. а) Докажите, что точка M делит отрезок AC в отношении 2:1, считая от вершины C. б) Найдите периметр ромба ABCD, если MR=2sqrt3
На стороне BC ромба ABCD отметили точку E так, что BE:EC=1:4. Через точку E перпендикулярно BC провели прямую ! 36 вариантов ЕГЭ 2024 Ященко ФИПИ школе, Вариант 7 Задание 17
Площадь полной поверхности конуса равна 66. Параллельно основанию конуса проведено сечение, делящее высоту пополам. Найдите площадь полной поверхности отсечённого конуса
Площадь полной поверхности конуса равна 66. Параллельно основанию конуса проведено сечение ! 36 вариантов ЕГЭ 2024 Ященко ФИПИ школе, Вариант 7 Задание 3
Основание пирамиды SABC - прямоугольный треугольник АВС с прямым углом при вершине C. Ребро SA является высотой пирамиды. Точки E и F лежат на рёбрах AC и BS соответственно так, что SF : FB = AE : EC =1:5. а) Докажите, что сечение пирамиды плоскостью α, проходящей через точки E и F перпендикулярно прямой AC, является прямоугольником. б) Точки H и M - точки пересечения плоскости α с прямыми АВ и SC соответственно. Найдите объём многогранника BCMEHF, если объём пирамиды SABC равен 216
Основание пирамиды SABC - прямоугольный треугольник АВС с прямым углом при вершине C. Ребро SA является высотой пирамиды ! СтатГрад Тренировочная работа № 3 по математике 11 класс 14-02-2024 Задание 13
Концы отрезка AB лежат по разные стороны от прямой l. Расстояние от точки A до прямой l равно 7, а расстояние от точки B до прямой l равно 13. Найдите расстояние от середины отрезка AB до прямой l
Концы отрезка AB лежат по разные стороны от прямой l. Расстояние от точка A до прямой l ! 50 вариантов заданий 2024 Ященко, Вариант 34 Задание 1
Площадь треугольника ABC равна 72, отрезок DE - средняя линия. Найдите площадь треугольника CDE
Площадь треугольника ABC равна 72, отрезок DE - средняя линия ! Статград Тренировочная работа №1 10 класс 31-01-2024 Вариант МА2300109 Задание 1
В прямоугольный треугольник АВС с прямым углом A вписана окружность с центром в точке O и радиусом R. К этой окружности параллельно прямой AB проведена касательная, которая пересекает стороны BC и AC в точках D и E соответственно. В треугольник CDE вписана окружность с центром в точке O1 и радиусом r. Прямые OO1 и AB пересекаются в точке P. а) Докажите, что AP:PB = cos ACB. б) Найдите площадь треугольника ABC, если R=6, r=4
В прямоугольный треугольник АВС с прямым углом A вписана окружность с центром в точке O и радиусом R ! 36 вариантов ЕГЭ 2024 Ященко ФИПИ школе, Вариант 3 Задание 17
На диагонали LN параллелограмма KLMN отмечены точки P и Q, причём LP=PQ=QN. Прямые KP и KQ пересекают прямую LM в точках R и T соответственно. a) Докажите, что LR:RT = 1:3. б) Найдите площадь параллелограмма KLMN, если площадь пятиугольника PRMSQ, где S - точка пересечения прямой KQ со стороной, равна 15
На диагонали LN параллелограмма KLMN отмечены точки P и Q, причём LP=PQ=QN ! 50 вариантов заданий 2024 Ященко, Вариант 6 Задание 17
В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD=8, BC=7
В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C и D и касается прямой AB в точке E ! СтатГрад Тренировочная работа № 1 по математике для 9 класса (27.09.2023) вариант МА2390101 Задание 25 # Задача-аналог   1028  
Точка P лежит на стороне AC равностороннего треугольника АВС. Окружность с диаметром BP пересекает стороны AB и BC в точках M и N соответственно. Хорды MF и NE параллельны прямой BP. Отрезки FP и EP пересекают стороны AB и BC в точках T и S соответственно. а) Докажите, что треугольники APT и CSP подобны. б) Найдите отношение, в котором точка P делит отрезок AC, если площади треугольников APT и CSP относятся как 4:9
Точка P лежит на стороне AC равностороннего треугольника АВС ! 50 вариантов заданий 2024 Ященко, Вариант 1 Задание 17
Касательная к окружности, вписанной в квадрат ABCD, пересекает стороны AB и AD в точках M и N соответственно. а) Докажите, что периметр треугольника AMN равен стороне квадрата. б) Прямая MN пересекает прямую CD в точке P. Найдите в каком отношении делит сторону BC прямая, проходящая через P и центр окружности, если AM : MB = 1 : 3
Касательная к окружности, вписанной в квадрат ABCD, пересекает стороны AB и AD в точках M и N соответственно ! ЕГЭ 2023 по математике (резервный день Москва 01-07-2023 Задание 16
Дана пирамида SABCD, в основании которой лежит прямоугольник ABCD. Сечение пирамиды - трапеция KLMN, причём точки K, L, M и N лежат на рёбрах SB, SA, SD и SC соответственно. Известно, что основания этой трапеции KL = 4, MN = 3, а SK : KB = 2 : 1. a) Докажите, что точки M и N – середины рёбер SD и SC. б) Пусть Н – точка пересечения диагоналей прямоугольника ABCD, а SH – высота пирамиды SABCD. Найдите SH, если известно, что площадь прямоугольника ABCD равна 48, а площадь трапеции KLMN равна 24
Дана пирамида SABCD, в основании которой лежит прямоугольник ABCD. Сечение пирамиды - трапеция KLMN, причём точки K, L, M и N лежат на рёбрах SB, SA, SD и SC соответственно ! ЕГЭ 2023 по математике (резервный день Москва 01-07-2023 Задание 13 # Условие пункта б) ... площадь трапеции KLMN равна 24,5 ? Надо уточнить
Дан куб с ребром 1, нижним основанием ABCD и боковыми рёбрами AA1, BB1, CC1, DD1. На рёбрах A1D1, BB1, CC1, AD отмечены соответственно точки K, L, M, N, так что A1K=KD1, BL=LB1=7:1, CM:MC1=DN:NA=4:3. Найдите площадь сечения тетраэдра KLMN, параллельного рёбрам KL и MN, имеющего форму ромба
Дан куб с ребром 1, нижним основанием ABCD и боковыми рёбрами AA1, BB1, CC1, DD1. На рёбрах A1D1, BB1, CC1, AD отмечены соответственно точки K, L, M, N ! ДВИ в МГУ 2023 - 5 поток, Вариант 236 Задание 7
В остроугольном треугольнике ABC проведены высоты AF, BD и CE. Найдите все возможные значения разности углов A и B треугольника ABC, если известно, что DE:EF = BC:AC
В остроугольном треугольнике ABC проведены высоты AF, BD и CE. Найдите все возможные значения разности углов A и B ! ДВИ в МГУ 2023 - 1 поток, Вариант 231 Задание 5
В правильной треугольной призме ABCA1B1C1 точка M является серединой ребра BB1, а точка N - середина ребра A1C1. Плоскость альфа, параллельная прямым AM и B1N, проходит через середину отрезка MN. a) Докажите, что плоскость альфа проходит через середину отрезка B1M. б) Найдите площадь сечения призмы ABCA1B1C1 плоскостью альфа, если все рёбра призмы имеют длину 4
В правильной треугольной призме ABCA1B1C1 точка M является серединой ребра BB1, а точка N - середина ребра A1C1 ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 13
Дана прямая призма, в основании которой равнобедренная трапеция с основаниями AD = 5 и BC = 3. M - точка, которая делит сторону A1D1 в отношении 2 : 3, К - середина DD1. a) Доказать, что MCК || BD. б) Найти тангенс угла между плоскостью MKC и плоскостью основания, если ∠ADC = 60°, а ∠CKM = 90°
Дана прямая призма, в основании которой равнобедренная трапеция с основаниями AD = 5 и BC = 3. M - точка, которая делит сторону A1D1 в отношении ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 13
Загрузка...
Новое на сайте
5/16/2024 6:24:21 PM Тренировочная работа №2 по математике 10 класс Статград 16-05-2024
Тренировочная работа №2 по математике 10 класс Статград 16-05-2024
Разбор вариантов профильного уровня, ответы и подробные решения; Вариант МА2300309
5/6/2024 5:25:00 PM Пробный ОГЭ по математике 9 класс Статград 06-05-2024
Пробный ОГЭ по математике 9 класс Статград 06-05-2024
Тренировочная работа №5 - Разбор вариантов, ответы и подробные решения
К началу страницы