365 тренировочный вариант от Ларина

Показаны 14 из 14 задач

?
В это поле можно ввести текст для поиска по вхождению полной подстроки:
Например:
пирам - будут найдены все условия задач, содержащие слова "пирамида", "Пирамиду","пирамиды" и тд.
треугольной пирамиды - будут найдены все условия задач, содержащие точную подстроку "треугольной пирамиды"
log - будут найдены все условия задач с логарифмами.
Надо иметь ввиду, что фильтрация будет происходить по текущему разделу.
Если необходимо найти более сложные строки, например, содержащие одновременно слова "Объём" "треугольной" "середины" "рёбер" нужно воспользоваться расширенным режимом поиска - сменив опцию "Содерж" на % из списка. Символ подстановки % соответствует любому количеству любых символов. Далее вводим текст %Объём%треуг%серед%бер% и примененяем фильтр, нажав ENTER (или жёлтую кнопку "Применить фильтр по условиям")
А) Можно ли в выражении ln5*ln6*ln7*ln8*ln10*ln12*ln14 вместо всех знаков * так расставить знаки "+" и "-", чтобы в результате получился ноль? Б) Можно ли в выражении ln6*ln7*ln8*ln12*ln14*ln24*ln32 вместо всех знаков * так расставить знаки "+" и "-", чтобы в результате получился ноль? В) Какое наибольшее количество попарно различных чисел можно выбрать из набора ln7, ln8, ..., ln20 и расставить знаки "+" и "-" так, чтобы их сумма стала равна нулю?
А) Можно ли в выражении ln5*ln6*ln7*ln8*ln10*ln12*ln14 вместо всех знаков * так расставить знаки ! Тренировочный вариант 365 от Ларина Задание 18 (19) # Решение - Кирилла Колокольцева # математика 50 вариантов ЕГЭ 2022 профильный уровень Ященко Вариант 12 Задание 18
В кубе ABCDA1B1C1D1 точки K, L и M - середины рёбер AB, B1C1 и DD1. А) Докажите, что сечение куба плоскостью KLM является правильным многоугольником. Б) Найдите расстояние от точки A до плоскости KLM, если ребро куба равно 2
В кубе ABCDA1B1C1D1 точки K, L и M - середины рёбер AB, B1C1 и DD1 ! Тренировочный вариант 365 от Ларина Задание 13 (14) # Решение - Елены Ильиничны Хажинской
B выпуклом четырёхугольнике ABCD диагональ AC является биссектрисой угла BAD и пересекается с диагональю BD в точке E. Известно, что около четырёхугольника ABCD можно описать окружность. А) Докажите, что AE*AC=AD*AB. Б) Найдите AE, если известно, что ВС=7, СЕ=4
B выпуклом четырёхугольнике ABCD диагональ AC является биссектрисой угла BAD и пересекается с диагональю BD в точке E ! Тренировочный вариант 365 от Ларина Задание 16
Аркадий продал партию компьютеров, а Борис продал партию принтеров, и их выручка оказалась одинаковой. «Если бы принтер стоил столько же, сколько компьютер, я бы получил 192 млн. рублей» ‐ сказал Борис. «Если бы компьютер стоил столько же, сколько принтер, я бы получил 75 млн. рублей» ‐ ответил Аркадий. На сколько процентов компьютер дороже принтера?
Аркадий продал партию компьютеров, а Борис продал партию принтеров, и их выручка оказалась одинаковой ! Тренировочный вариант 365 от Ларина Задание 8 (11) ЕГЭ
Решите уравнение (3^(x^2)-81)/(x-2)=0. Если уравнение имеет более одного корня, в ответе укажите больший из них
Тренировочный вариант 365 от Ларина Задание 1
Окружность, вписанная в треугольник ABC, касается его стороны BC в точке N. Известно, что BN =15 и AC =17. Найдите периметр треугольника
Окружность, вписанная в треугольник ABC, касается его стороны BC в точке N ! Тренировочный вариант 365 от Ларина Задание 3 (6)
Найдите значение выражения (9^(x+11)*2^(3x+8))/(3^(2x+21)*4^(x+4)) при x=2
Тренировочный вариант 365 от Ларина Задание 4 (9)
Основанием наклонной призмы ABCDA1B1C1D1 является квадрат ABCD, а диагональ AC1 призмы перпендикулярна плоскости основания. Найдите площадь основания призмы, если AC1=2sqrt7, A A1 =6
Основанием наклонной призмы ABCDA1B1C1D1 является квадрат ABCD, а диагональ AC1 призмы перпендикулярна плоскости основания ! Тренировочный вариант 365 от Ларина Задание 5 (8) ЕГЭ
На рисунке изображен график y=f'(x) — производной функции f(x), определенной на интервале (‐5; 19). Найдите количество точек максимума функции f(x), принадлежащих отрезку [‐3; 15]
На рисунке изображен график y=f'(x) - производной функции f(x), определенной на интервале ! Тренировочный вариант 365 от Ларина Задание 6 (7) ЕГЭ
На рисунке изображен график функции f(x)=a*tg(x)+b. Найдите b
На рисунке изображен график функции f(x)=a tg(x)+b. Найдите b ! Тренировочный вариант 365 от Ларина Задание 9 ЕГЭ
Найдите наибольшее значение функции y=12sin(x)-6sqrt(3)x+sqrt(3)pi+6 на отрезке [0; pi/2].
Найдите наибольшее значение функции y=12sinx - 6sqrt3x +sqrt3pi +6 ! Тренировочный вариант 365 от Ларина Задание 11 (12) ЕГЭ
а) Решите уравнение (4^(x+1/2)-2^(x+1)-2^(x+1/2)+sqrt(2))/(sin(x)+sin(2x))=0 б) Найдите все корни уравнения, принадлежащие отрезку [-pi/2; pi/2].
Тренировочный вариант 365 от Ларина Задание 12 (13) ЕГЭ
Решите неравенство (6+sqrt(35))^(2x)-(7-sqrt(35))/(6-sqrt(35))^x+6 > sqrt(35)
Тренировочный вариант 365 от Ларина Задание 14 (15)
Найдите все значения параметра а, при каждом из которых уравнение abs(log_{5}(x^2)-a)-abs(log_{5}(x)+2a)=(log_{5}(x))^2 имеет ровно 4 решения
Найдите все значения параметра а, при каждом из которых уравнение имеет ровно 4 решения ! математика 50 вариантов ЕГЭ 2020 профильный уровень Ященко Вариант 34 Задание 18 # Тренировочная работа 30 пособия 36 вариантов ЕГЭ Ященко 2019 Задача 18 # математика 50 вариантов ЕГЭ 2018 Ященко Тренировочная работа 49 Часть 2 Задание 18 Вариант 49 # Тренировочный вариант 365 от Ларина Задание 17 (18)
Загрузка...
Новое на сайте
11/6/2024 12:15:00 PM 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
10/24/2024 10:25:00 PM 30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
Решаем задачи из пособия 2025 года "Математика 30 вариантов ЕГЭ Базовый уровень ФИПИ школе Ященко"
10/24/2024 8:25:00 PM Математика 36 вариантов ОГЭ 2025 ФИПИ
Математика 36 вариантов ОГЭ 2025 ФИПИ
Решаем задания типовых экзаменационных вариантов пособия 36 вариантов ОГЭ 2025 ФИПИ школе под редакцией Ященко И В
К началу страницы