Параллелограмм

Показаны 20 из 91 задач

?
В это поле можно ввести текст для поиска по вхождению полной подстроки:
Например:
пирам - будут найдены все условия задач, содержащие слова "пирамида", "Пирамиду","пирамиды" и тд.
треугольной пирамиды - будут найдены все условия задач, содержащие точную подстроку "треугольной пирамиды"
log - будут найдены все условия задач с логарифмами.
Надо иметь ввиду, что фильтрация будет происходить по текущему разделу.
Если необходимо найти более сложные строки, например, содержащие одновременно слова "Объём" "треугольной" "середины" "рёбер" нужно воспользоваться расширенным режимом поиска - сменив опцию "Содерж" на % из списка. Символ подстановки % соответствует любому количеству любых символов. Далее вводим текст %Объём%треуг%серед%бер% и примененяем фильтр, нажав ENTER (или жёлтую кнопку "Применить фильтр по условиям")
В параллелограмме ABCD биссектриса угла BAD пересекает сторону BC в точке K, а продолжение стороны DC - в точке P; диагональ AC является биссектрисой угла KAD. а) Докажите, что PC^2 = CD * PK. б) Найдите AC : AP, если BC : AB = 2,5
В параллелограмме ABCD биссектриса угла BAD пересекает сторону BC в точке K, а продолжение стороны DC - в точке P ! ФИПИ школе 2025 ЕГЭ Ященко 36 вариантов профильный уровень Вариант 5 Задание 17
В параллелограмме ABCD с острым углом BAD точка E - середина стороны BC. Через точку B перпендикулярно прямой AB и через точку E перпендикулярно прямой DE проведены соответственно две прямые, которые пересекаются в точке K. а) Докажите, что AK = KD. б) Найдите угол ADE, если расстояние от точки K до прямой AD равно длине отрезка EC и ∠ADC = 110°
Найдите угол ADE, если расстояние от точки K до прямой AD равно длине отрезка EC и ∠ADC = 110° ! ФИПИ школе 2025 ЕГЭ Ященко 36 вариантов профильный уровень Вариант 4 Задание 17 # Задача-аналог   4543  
В параллелограмме ABCD с острым углом BAD точка E - середина стороны BC. Через точку B перпендикулярно прямой AB и через точку E перпендикулярно прямой DE проведены соответственно две прямые, которые пересекаются в точке K. а) Докажите, что AK = KD. б) Найдите угол BAD, если расстояние от точки K до прямой AD равно длине отрезка EC и ∠CED = 58°
В параллелограмме ABCD с острым углом BAD точка E - середина стороны BC. Через точку B перпендикулярно прямой AB ! ФИПИ школе 2025 ЕГЭ Ященко 36 вариантов профильный уровень Вариант 3 Задание 17 # Задача-аналог   4556  
В параллелограмме ABCD угол В тупой, а высота, опущенная на АВ, пересекает продолжение диагонали DB в точке К. Найдите площадь параллелограмма, если АВ = 12, BD = 10, CK = 9
В параллелограмме ABCD угол В тупой, а высота, опущенная на АВ, пересекает продолжение диагонали DB в точке К ! Тренировочный вариант 476 от Ларина Задание 1
Площадь параллелограмма равна 104. Точка E - середина стороны AB. Найдите площадь трапеции DAEC
Площадь параллелограмма равна 104. Точка E - середина стороны AB ! ФИПИ школе 2025 ОГЭ Ященко 36 вариантов Вариант 3 Задание 17
Какое из следующих утверждений верно? 1) Любой параллелограмм, у которого диагонали равны, является ромбом. 2) Тангенс любого острого угла меньше единицы. 3) Сумма углов равнобедренного треугольника равна 180 градусам. В ответ запишите номер выбранного утверждения
Какое из следующих утверждений верно? 1) Любой параллелограмм, у которого диагонали равны, является ромбом 2) ! ФИПИ школе 2025 ОГЭ Ященко 36 вариантов Вариант 2 Задание 19
Площадь параллелограмма ABCD равна 24. Точка E - середина стороны AD. Найдите площадь трапеции BCDE
Площадь параллелограмма ABCD равна 24 ! Демонстрационный вариант ЕГЭ 2025, математика профильный уровень, Задание 1 # Задача-аналог   2812  
В треугольнике ABC угол A является тупым. На стороне BC отмечена точка D таким образом, что AC=CD. При этом окружность, описанная около треугольника ACD, касается прямой AB в точке A. На прямой AD отмечена точка E таким образом, что CE=EA=AB. Найдите отношение BC:AB
В треугольнике ABC угол A является тупым. На стороне BC отмечена точка D таким образом, что AC=CD ! ДВИ в МГУ 2024 - Вариант 246 6-го потока 21-07-2024, Задание 5
Боковые стороны трапеции лежат на перпендикулярных прямых. А) Докажите, что четырехугольник с вершинами в серединах диагоналей и в серединах оснований трапеции ‐ прямоугольник. Б) Найдите площадь трапеции, если ее меньшее основание равно 7, а стороны рассмотренного выше прямоугольника равны 6 и 2,5
Боковые стороны трапеции лежат на перпендикулярных прямых ! Тренировочный вариант 457 от Ларина Задание 17
Биссектрисы углов A и D параллелограмма ABCD пересекаются в точке K, лежащей на стороне BC. Докажите, что K - середина BC
Сторона AD параллелограмма ABCD вдвое больше стороны AB. Точка M - середина стороны AD ! СтатГрад Тренировочная работа № 4 по математике для 9 класса (06.03.2024) вариант МА2390401 Задание 24
Какое из следующих утверждений верно? 1) Треугольник со сторонами 1, 2, 4 существует. 2) Если диагонали параллелограмма равны, то этот параллелограмм является ромбом. 3) Основания любой трапеции параллельны. В ответе запишите номер выбранного утверждения
Какое из следующих утверждений верно? 1) Треугольник со сторонами 1, 2, 4 существует ! СтатГрад Тренировочная работа № 3 по математике для 9 класса (24.01.2024) Задание 19
В параллелограмме ABCD со сторонами AD=12, AB=4 и углом A, равным 30°, проведены биссектрисы всех четырёх углов. a) Докажите, что четырёхугольник, ограниченный биссектрисами, - прямоугольник. б) Найдите площадь четырёхугольника, ограниченного биссектрисами
В параллелограмме ABCD со сторонами AD=12, AB=4 и углом A, равным 30° ! Найдите площадь четырёхугольника, ограниченного биссектрисами # Московский пробник 14-12-2023 Задание 17
Сумма двух углов параллелограмма равна 46°. Найдите один из оставшихся углов. Ответ дайте в градусах
Сумма двух углов параллелограмма равна 46° ! Тренировочная работа №2 по математике 11 класс 13.12.2023 Вариант МА2310209 Задание 1
На диагонали LN параллелограмма KLMN отмечены точки P и Q, причём LP=PQ=QN. Прямые KP и KQ пересекают прямую LM в точках R и T соответственно. a) Докажите, что LR:RT = 1:3. б) Найдите площадь параллелограмма KLMN, если площадь пятиугольника PRMSQ, где S - точка пересечения прямой KQ со стороной, равна 15
На диагонали LN параллелограмма KLMN отмечены точки P и Q, причём LP=PQ=QN ! 50 вариантов заданий 2024 Ященко, Вариант 6 Задание 17
Сторона AD параллелограмма ABCD вдвое больше стороны AB. Точка M - середина стороны AD. Докажите, что BM - биссектриса угла ABC
Сторона AD параллелограмма ABCD вдвое больше стороны AB. Точка M - середина стороны AD ! СтатГрад Тренировочная работа № 1 по математике для 9 класса (27.09.2023) вариант МА2390101 Задание 24
Какое из следующих утверждений является истинным высказыванием? 1) Расстояние от точки, лежащей на окружности, до центра окружности равно радиусу этой окружности. 2) Средняя линия трапеции равна сумме её оснований. 3) Площадь параллелограмма равна половине произведения его диагоналей. В ответе запишите номер выбранного утверждения
Какое из следующих утверждений является истинным высказыванием? 1) Расстояние от точки, лежащей на окружности ! СтатГрад Тренировочная работа № 1 по математике для 9 класса (27.09.2023) вариант МА2390101 Задание 19
В правильной треугольной призме ABCA1B1C1 точка M является серединой ребра BB1, а точка N - середина ребра A1C1. Плоскость альфа, параллельная прямым AM и B1N, проходит через середину отрезка MN. a) Докажите, что плоскость альфа проходит через середину отрезка B1M. б) Найдите площадь сечения призмы ABCA1B1C1 плоскостью альфа, если все рёбра призмы имеют длину 4
В правильной треугольной призме ABCA1B1C1 точка M является серединой ребра BB1, а точка N - середина ребра A1C1 ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 13
Дана прямая призма, в основании которой равнобедренная трапеция с основаниями AD = 5 и BC = 3. M - точка, которая делит сторону A1D1 в отношении 2 : 3, К - середина DD1. a) Доказать, что MCК || BD. б) Найти тангенс угла между плоскостью MKC и плоскостью основания, если ∠ADC = 60°, а ∠CKM = 90°
Дана прямая призма, в основании которой равнобедренная трапеция с основаниями AD = 5 и BC = 3. M - точка, которая делит сторону A1D1 в отношении ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 13
Основанием прямой призмы ABCDA1B1C1D1 является параллелограмм. На рёбрах A1B1, B1C1 и BC отмечены точки M, K и N соответственно, причем B1K : KC1 = 1 : 2, а AMKN - равнобедренная трапеция с основаниями 2 и 3. а) Докажите, что N - середина BC. б) Найдите площадь трапеции AMKN, если объем призмы ABCDA1B1C1D1 равен 12, а ее высота равна 2
Основанием прямой призмы ABCDA1B1C1D1 является параллелограмм. На рёбрах A1B1, B1C1 и BC отмечены точки M, K и N ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 13
На клетчатой бумаге с размером клетки 1 × 1 изображён параллелограмм ABCD. Во сколько раз сторона AD меньше высоты параллелограмма, проведённой к этой стороне?
На клетчатой бумаге с размером клетки 1 × 1 изображён параллелограмм ABCD ! Во сколько раз сторона AD меньше высоты параллелограмма, проведённой к этой стороне?
Загрузка...
Новое на сайте
11/6/2024 12:15:00 PM 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
10/24/2024 10:25:00 PM 30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
Решаем задачи из пособия 2025 года "Математика 30 вариантов ЕГЭ Базовый уровень ФИПИ школе Ященко"
10/24/2024 8:25:00 PM Математика 36 вариантов ОГЭ 2025 ФИПИ
Математика 36 вариантов ОГЭ 2025 ФИПИ
Решаем задания типовых экзаменационных вариантов пособия 36 вариантов ОГЭ 2025 ФИПИ школе под редакцией Ященко И В
К началу страницы