Параллелограмм

Показаны 20 из 85 задач

?
В это поле можно ввести текст для поиска по вхождению полной подстроки:
Например:
пирам - будут найдены все условия задач, содержащие слова "пирамида", "Пирамиду","пирамиды" и тд.
треугольной пирамиды - будут найдены все условия задач, содержащие точную подстроку "треугольной пирамиды"
log - будут найдены все условия задач с логарифмами.
Надо иметь ввиду, что фильтрация будет происходить по текущему разделу.
Если необходимо найти более сложные строки, например, содержащие одновременно слова "Объём" "треугольной" "середины" "рёбер" нужно воспользоваться расширенным режимом поиска - сменив опцию "Содерж" на % из списка. Символ подстановки % соответствует любому количеству любых символов. Далее вводим текст %Объём%треуг%серед%бер% и примененяем фильтр, нажав ENTER (или жёлтую кнопку "Применить фильтр по условиям")
Площадь параллелограмма ABCD равна 24. Точка E - середина стороны AD. Найдите площадь трапеции BCDE
Площадь параллелограмма ABCD равна 24 ! Демонстрационный вариант ЕГЭ 2025, математика профильный уровень, Задание 1 # Задача-аналог   2812  
В треугольнике ABC угол A является тупым. На стороне BC отмечена точка D таким образом, что AC=CD. При этом окружность, описанная около треугольника ACD, касается прямой AB в точке A. На прямой AD отмечена точка E таким образом, что CE=EA=AB. Найдите отношение BC:AB
В треугольнике ABC угол A является тупым. На стороне BC отмечена точка D таким образом, что AC=CD ! ДВИ в МГУ 2024 - Вариант 246 6-го потока 21-07-2024, Задание 5
Боковые стороны трапеции лежат на перпендикулярных прямых. А) Докажите, что четырехугольник с вершинами в серединах диагоналей и в серединах оснований трапеции ‐ прямоугольник. Б) Найдите площадь трапеции, если ее меньшее основание равно 7, а стороны рассмотренного выше прямоугольника равны 6 и 2,5
Боковые стороны трапеции лежат на перпендикулярных прямых ! Тренировочный вариант 457 от Ларина Задание 17
Биссектрисы углов A и D параллелограмма ABCD пересекаются в точке K, лежащей на стороне BC. Докажите, что K - середина BC
Сторона AD параллелограмма ABCD вдвое больше стороны AB. Точка M - середина стороны AD ! СтатГрад Тренировочная работа № 4 по математике для 9 класса (06.03.2024) вариант МА2390401 Задание 24
Какое из следующих утверждений верно? 1) Треугольник со сторонами 1, 2, 4 существует. 2) Если диагонали параллелограмма равны, то этот параллелограмм является ромбом. 3) Основания любой трапеции параллельны. В ответе запишите номер выбранного утверждения
Какое из следующих утверждений верно? 1) Треугольник со сторонами 1, 2, 4 существует ! СтатГрад Тренировочная работа № 3 по математике для 9 класса (24.01.2024) Задание 19
В параллелограмме ABCD со сторонами AD=12, AB=4 и углом A, равным 30°, проведены биссектрисы всех четырёх углов. a) Докажите, что четырёхугольник, ограниченный биссектрисами, - прямоугольник. б) Найдите площадь четырёхугольника, ограниченного биссектрисами
В параллелограмме ABCD со сторонами AD=12, AB=4 и углом A, равным 30° ! Найдите площадь четырёхугольника, ограниченного биссектрисами # Московский пробник 14-12-2023 Задание 17
Сумма двух углов параллелограмма равна 46°. Найдите один из оставшихся углов. Ответ дайте в градусах
Сумма двух углов параллелограмма равна 46° ! Тренировочная работа №2 по математике 11 класс 13.12.2023 Вариант МА2310209 Задание 1
На диагонали LN параллелограмма KLMN отмечены точки P и Q, причём LP=PQ=QN. Прямые KP и KQ пересекают прямую LM в точках R и T соответственно. a) Докажите, что LR:RT = 1:3. б) Найдите площадь параллелограмма KLMN, если площадь пятиугольника PRMSQ, где S - точка пересечения прямой KQ со стороной, равна 15
На диагонали LN параллелограмма KLMN отмечены точки P и Q, причём LP=PQ=QN ! 50 вариантов заданий 2024 Ященко, Вариант 6 Задание 17
Сторона AD параллелограмма ABCD вдвое больше стороны AB. Точка M - середина стороны AD. Докажите, что BM - биссектриса угла ABC
Сторона AD параллелограмма ABCD вдвое больше стороны AB. Точка M - середина стороны AD ! СтатГрад Тренировочная работа № 1 по математике для 9 класса (27.09.2023) вариант МА2390101 Задание 24
Какое из следующих утверждений является истинным высказыванием? 1) Расстояние от точки, лежащей на окружности, до центра окружности равно радиусу этой окружности. 2) Средняя линия трапеции равна сумме её оснований. 3) Площадь параллелограмма равна половине произведения его диагоналей. В ответе запишите номер выбранного утверждения
Какое из следующих утверждений является истинным высказыванием? 1) Расстояние от точки, лежащей на окружности ! СтатГрад Тренировочная работа № 1 по математике для 9 класса (27.09.2023) вариант МА2390101 Задание 19
В правильной треугольной призме ABCA1B1C1 точка M является серединой ребра BB1, а точка N - середина ребра A1C1. Плоскость альфа, параллельная прямым AM и B1N, проходит через середину отрезка MN. a) Докажите, что плоскость альфа проходит через середину отрезка B1M. б) Найдите площадь сечения призмы ABCA1B1C1 плоскостью альфа, если все рёбра призмы имеют длину 4
В правильной треугольной призме ABCA1B1C1 точка M является серединой ребра BB1, а точка N - середина ребра A1C1 ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 13
Дана прямая призма, в основании которой равнобедренная трапеция с основаниями AD = 5 и BC = 3. M - точка, которая делит сторону A1D1 в отношении 2 : 3, К - середина DD1. a) Доказать, что MCК || BD. б) Найти тангенс угла между плоскостью MKC и плоскостью основания, если ∠ADC = 60°, а ∠CKM = 90°
Дана прямая призма, в основании которой равнобедренная трапеция с основаниями AD = 5 и BC = 3. M - точка, которая делит сторону A1D1 в отношении ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 13
Основанием прямой призмы ABCDA1B1C1D1 является параллелограмм. На рёбрах A1B1, B1C1 и BC отмечены точки M, K и N соответственно, причем B1K : KC1 = 1 : 2, а AMKN - равнобедренная трапеция с основаниями 2 и 3. а) Докажите, что N - середина BC. б) Найдите площадь трапеции AMKN, если объем призмы ABCDA1B1C1D1 равен 12, а ее высота равна 2
Основанием прямой призмы ABCDA1B1C1D1 является параллелограмм. На рёбрах A1B1, B1C1 и BC отмечены точки M, K и N ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 13
На клетчатой бумаге с размером клетки 1 × 1 изображён параллелограмм ABCD. Во сколько раз сторона AD меньше высоты параллелограмма, проведённой к этой стороне?
На клетчатой бумаге с размером клетки 1 × 1 изображён параллелограмм ABCD ! Во сколько раз сторона AD меньше высоты параллелограмма, проведённой к этой стороне?
На сторонах AB и AD параллелограмма ABCD взяты точки M и N так, что прямые MC и NC разбивают параллелограмм на 3 равновеликие части. BD=d. Найти MN
На сторонах AB и AD параллелограмма ABCD взяты точки M и N так, что прямые MC и NC разбивают параллелограмм на 3 равновеликие части
Площадь трапеции ABCD равна 30. Точка Р – середина боковой стороны АВ. Точка R на боковой стороне CD выбрана так, что 2CD=3RD. Прямые AR и PD пересекаются в точке Q , AD=2BC. a) Докажите, что точка Q – середина отрезка AR б) Найдите площадь треугольника APQ
Площадь трапеции ABCD равна 30. Точка Р – середина боковой стороны АВ. Точка R на боковой стороне CD выбрана так, что 2CD=3RD ! Тренировочный вариант 221 от Ларина Задание 16 # Решение пункта Б
Основание прямой призмы ABCDA1B1C1D - параллелограмм АВСD, диагонали которого пересекаются в точке О. Известно, что АА1 : АВ : АD = 1 : 2 : √5. На ребре АА1 отметили такую точку М, что прямые ОМ и BD1 перпендикулярны. а) Докажите, что точка М - середина ребра АА1. б) Найдите расстояние от точки М до прямой B1D1, если АВ=2 , BD=3
Основание прямой призмы ABCDA1B1C1D - параллелограмм АВСD, диагонали которого пересекаются в точке О ! Тренировочная работа №1 по математике 10 класс Статград 08-02-2023 Вариант МА2200109 Задание 13
В параллелограмме ABCD диагональ BD перпендикулярна стороне AB. AB:AD=1:2. Из точки B опущен перпендикуляр BE на AD, AE=4. Найти площадь ABCD
В параллелограмме ABCD диагональ BD перпендикулярна стороне AB. AB:AD=1:2
Площадь параллелограмма ABCD равна 96. Точка E - середина стороны AD. Найдите площадь треугольника ABE
Площадь параллелограмма ABCD равна 96. Точка E - середина стороны AD ! Тренировочная работа по математике №2 СтатГрад 11 класс 13.12.2022 Задание 1 Вариант МА2210209
Точка пересечения биссектрис двух углов параллелограмма, прилежащих к одной стороне, принадлежит противоположной стороне. Меньшая сторона параллелограмма равна 6. Найдите его большую сторону
Точка пересечения биссектрис двух углов параллелограмма, прилежащих к одной стороне, принадлежит противоположной стороне ! 36 вариантов ФИПИ Ященко 2023 Вариант 16 Задание 1
Загрузка...
Новое на сайте
Репетиторы и курсы
К началу страницы