Тренировочная работа №2 по математике 10-11 класс Статград 18-05-2022

Показаны 5 из 5 задач

?
В это поле можно ввести текст для поиска по вхождению полной подстроки:
Например:
пирам - будут найдены все условия задач, содержащие слова "пирамида", "Пирамиду","пирамиды" и тд.
треугольной пирамиды - будут найдены все условия задач, содержащие точную подстроку "треугольной пирамиды"
log - будут найдены все условия задач с логарифмами.
Надо иметь ввиду, что фильтрация будет происходить по текущему разделу.
Если необходимо найти более сложные строки, например, содержащие одновременно слова "Объём" "треугольной" "середины" "рёбер" нужно воспользоваться расширенным режимом поиска - сменив опцию "Содерж" на % из списка. Символ подстановки % соответствует любому количеству любых символов. Далее вводим текст %Объём%треуг%серед%бер% и примененяем фильтр, нажав ENTER (или жёлтую кнопку "Применить фильтр по условиям")
а) Решите уравнение (3tg^2(x)-1)/(2sin(x)+1)=0. б) Найдите все корни уравнения, принадлежащие промежутку [2pi; (7pi)/2].
а) Решите уравнение 3tg2x -1 /2sinx +1 =0 ! Статград - 18.05.2022 Задание 12
Решите неравенство (9abs(x^2-22x+105))/(17-abs(x+2))-abs(22x-x^2-105) <= 0
Решите неравенство 9|x2 - 22x+105| / 17-|x+2| - |22x-x2 -105| <= 0 ! Статград 18-05-2022 Вариант МА2100309 Задание 14
На ребре AA1 прямоугольного параллелепипеда ABCDA1B1C1D1 взята точка E так, что A1E =6EA. Точка T — середина ребра B1C1. Известно, что AB = 4sqrt2, AD=12, AA1=14. а) Докажите, что плоскость ETD1 делит ребро BB1 в отношении 4 : 3, считая от точки B. б) Найдите площадь сечения параллелепипеда плоскостью ETD1
На ребре AA1 прямоугольного параллелепипеда ABCDA1B1C1D1 взята точка E так, что A1E =6EA ! Статград 18.05.2022 Вариант МА2100309 Задание 13 # Задача-Аналог   2988  
Точка O - центр окружности, вписанной в треугольник ABC, в котором AC > BC. Точка B1 симметрична точке B относительно прямой OC (то есть прямая OC - серединный перпендикуляр к отрезку BB1). а) Докажите, что точки A, B, O и B1 лежат на одной окружности. б) Найдите площадь четырёхугольника ABOB1, если AB=10, AC= 8, BC = 6
Точка O - центр окружности, вписанной в треугольник ABC, в котором AC > BC ! Статград 18-05-2022 Вариант МА2100309 Задание 16
Найдите все значения a, при каждом из которых любое число из отрезка 3 <= x <= 6 является решением уравнения abs(x-a+5)+abs(x+a-1)=2a-6
Найдите все значения a, при каждом из которых любое число из отрезка 3 <= x <= 6 является решением уравнения ! |x- a+5| + |x+a-1| = 2a-6 Статград 18.05.2022 МА2100309 Задание 17
Загрузка...
Новое на сайте
11/6/2024 12:15:00 PM 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
10/24/2024 10:25:00 PM 30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
Решаем задачи из пособия 2025 года "Математика 30 вариантов ЕГЭ Базовый уровень ФИПИ школе Ященко"
10/24/2024 8:25:00 PM Математика 36 вариантов ОГЭ 2025 ФИПИ
Математика 36 вариантов ОГЭ 2025 ФИПИ
Решаем задания типовых экзаменационных вариантов пособия 36 вариантов ОГЭ 2025 ФИПИ школе под редакцией Ященко И В
К началу страницы