| | | |
| |
3631 | В прямоугольнике ABCD диагонали пересекаются в точке O, а угол BDC равен 75°. Точка P лежит вне прямоугольника, а угол APB равен 150°.
а) Докажите, что углы BAP и POB равны.
б) Прямая PO пересекает сторону CD в точке F. Найдите CF, если и BP=4
Решение | В прямоугольнике ABCD диагонали пересекаются в точке O, а угол BDC равен 75° ! 36 вариантов ФИПИ Ященко 2023 Вариант 25 Задание 16 # Задача-аналог 2559 |   |
|
3577 | В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами AB=5 и . Длины боковых рёбер пирамиды . а) Докажите, что SA - высота пирамиды SABCD. б) Найдите угол между прямыми SC и BD
Решение | В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами AB=5 и BC=sqrt23 ! Тренировочная работа по математике №2 СтатГрад 11 класс 13.12.2022 Задание 13 Вариант МА2210209 #Задача-аналог 2525 |   |
|
3244 | В правильной четырёхугольной призме ABCDA1B1C1D1 сторона основания AB равна 3, а боковое ребро AA1 равно . На ребрах C1D1 и DD1 отмечены соответственно точки K и M так, что D1K=KC1, а DM:MD1=1:3. а) Докажите, что прямые MK и BK перпендикулярны. б) Найдите угол между плоскостями BMK и ABB1
Решение | В правильной четырёхугольной призме ABCDA1B1C1D1 сторона основания AB равна 3, а боковое ребро AA1 равно sqrt 3 ! 36 вариантов ЕГЭ 2022 ФИПИ школе Ященко Вариант 18 Задание 13 # Задача-аналог 2574 |   |
|
2881 | Точка O - центр вписанной в треугольник ABC окружности. Прямая BO вторично пересекает описанную около этого треугольника окружность в точке P. а) Докажите, что . б) Найдите площадь треугольника APO, если радиус описанной около треугольника ABC окружности равен 6,
Решение | Прямая BO вторично пересекает описанную около этого треугольника окружность в точке P ! 36 вариантов ФИПИ Ященко 2022 Вариант 21 Задание 16 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 11 Задание 16 # Задача-аналог 2623 |   |
|
2877 | В правильной треугольной пирамиде SABC сторона основания AB равна 6, а боковое ребро SA равно 7. На рёбрах AB и SC отмечены точки K и M соответственно, причем AK:KB=SM:MC=1:5. Плоскость alpha содержит прямую KM и параллельна прямой BC. a) Докажите, что плоскость alpha параллельна прямой SA. б) Найдите угол между плоскостями alpha и SBC
Решение | В правильной треугольной пирамиде SABC сторона основания AB равна 6, а боковое ребро SA равно 7 ! 36 вариантов ФИПИ Ященко 2022 Вариант 21 Задание 13 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 11 Задание 14 # Задача-аналог 1669 |   |
|
2874 | Для каждого натурального числа n обозначим через n! произведение первых n натуральных чисел (1! = 1). а) Существует ли такое натуральное число n, что десятичная запись числа n! оканчивается ровно 9 нулями? б) Существует ли такое натуральное число n, что десятичная запись числа n! оканчивается ровно 23 нулями? в) Сколько существует натуральных чисел n, меньших 100, для каждого из которых десятичная запись числа n∙ (100 - n)! оканчивается ровно 23 нулями
Решение | Для каждого натурального числа n обозначим через n! произведение первых n натуральных чисел (1! = 1) ! 36 вариантов ЕГЭ 2022 ФИПИ школе Ященко Вариант 17 Задание 18 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 7 Задание 19 |   |
|
2873 | Найдите, при каких неотрицательных значениях a функция f(x)= на отрезке [-1; 1] имеет ровно одну точку минимума
Решение График | Найдите, при каких неотрицательных значениях a функция f(x) на отрезке [-1; 1] имеет ровно одну точку минимума ! 36 вариантов ЕГЭ 2022 ФИПИ школе Ященко Вариант 17 Задание 17 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 7 Задание 18 |   |
|
2872 | Александр хочет купить пакет акций быстрорастущей компании. В начале года у Александра не было денег на покупку акций, а пакет стоил 100 000 рублей. В середине каждого месяца Александр откладывает на покупку пакета акций одну и ту же сумму, а в конце месяца пакет дорожает, но не более чем на 30 %. Какую наименьшую сумму нужно откладывать Александру каждый месяц, чтобы через некоторое время купить желаемый пакет акций?
Решение | Александр хочет купить пакет акций быстрорастущей компании ! 36 вариантов ЕГЭ 2022 ФИПИ школе Ященко Вариант 15 Задание 15 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 7 Задание 17 |   |
|
2853 | а) Решите уравнение б) Найдите все корни этого уравнения, принадлежащие отрезку
Решение График | а) Решите уравнение 2sin2 x + cosx -1 = 0 ! 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 36 Задание 13 |   |
|
2852 | За круглый стол на 21 стул в случайном порядке рассаживаются 19 мальчиков и 2 девочки. Найдите вероятность того, что девочки не окажутся на соседних местах
Решение | За круглый стол на 21 стул в случайном порядке рассаживаются 19 мальчиков и 2 девочки ! 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 35 Задание 4 |   |
|