Теоремы стереометрии

Показаны 20 из 341 задач

?
В это поле можно ввести текст для поиска по вхождению полной подстроки:
Например:
пирам - будут найдены все условия задач, содержащие слова "пирамида", "Пирамиду","пирамиды" и тд.
треугольной пирамиды - будут найдены все условия задач, содержащие точную подстроку "треугольной пирамиды"
log - будут найдены все условия задач с логарифмами.
Надо иметь ввиду, что фильтрация будет происходить по текущему разделу.
Если необходимо найти более сложные строки, например, содержащие одновременно слова "Объём" "треугольной" "середины" "рёбер" нужно воспользоваться расширенным режимом поиска - сменив опцию "Содерж" на % из списка. Символ подстановки % соответствует любому количеству любых символов. Далее вводим текст %Объём%треуг%серед%бер% и примененяем фильтр, нажав ENTER (или жёлтую кнопку "Применить фильтр по условиям")
В правильной четырехугольной пирамиде SABCD с основанием ABCD точка O - центр основания пирамиды, точка M - середина ребра SC, точка K делит ребро BC в отношении BK:KC=3:2, а AB=4 и SO=2sqrt23. а) Докажите, что плоскость OMK параллельна прямой SA. б) Найдите длину отрезка, по которому плоскость OMK пересекает грань SAD
В правильной четырехугольной пирамиде SABCD с основанием ABCD точка O - центр основания пирамиды, точка M - середина ребра SC ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 14
В правильной треугольной пирамиде SABC с основанием АВС точки М и K - середины ребер АВ и SC соответственно, а точки N и L отмечены на ребрах SA и BC соответственно так, что отрезки МК и NL пересекаются, а 2AN = 3NS. а) Докажите, что прямые MN, KL и SB пересекаются в одной точке. б) Найдите отношение BL:LC
В правильной треугольной пирамиде SABC с основанием АВС точки М и K - середины ребер АВ и SC соответственно, а точки N и L отмечены на ребрах SA и BC соответственно так, что отрезки МК и NL пересекаются, а 2AN = 3NS ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 14 # Два способа решения: с теоремой Менелая и без неё
Все рёбра правильной четырёхугольной пирамиды SABCD с основанием ABCD равны 4. Точка O - центр основания пирамиды. Плоскость, параллельная прямой SA и проходящая через точку O, пересекает рёбра SC и SD в точках M и N соответственно. Точка N делит ребро SD в отношении SN:ND=1:3. а) Докажите, что точка M - середина ребра SC. б) Найдите длину отрезка, по которому плоскость OMN пересекает грань SBC
Найдите длину отрезка, по которому плоскость OMN пересекает грань SBC ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 14
В правильном тетраэдре ABCD точки M и N – середины ребер AB и CD соответственно. Плоскость α перпендикулярна прямой MN и пересекает ребро BC в точке K. а) Докажите, что прямая MN перпендикулярна ребрам AB и CD. б) Найдите площадь сечения тетраэдра ABCD плоскостью α, если известно, что BK=1, KC=5
В правильном тетраэдре ABCD точки M и N – середины ребер AB и CD соответственно ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 14
В прямоугольном параллелепипеде ABCDA1B1C1D1 известно, что AB=3, AD=4, AA1=6. Через точки B1 и D параллельно AC проведена плоскость, пересекающая ребро CC1 в точке L. а) Докажите, что L - середина CC1. б) Найдите расстояние от точки B до плоскости сечения
В прямоугольном параллелепипеде ABCDA1B1C1D1 известно, что AB=3, AD=4, AA1=6. Через точки B1 и D параллельно AC проведена плоскость ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 14
Дана правильная четырёхугольная призма ABCDA1B1C1D1. Плоскость α проходит через вершины В1 и D и пересекает ребра АА1 и СС1 в точках М и К соответственно. Известно, что четырёхугольник MB1KD – ромб. а) Докажите, что точка М - середина ребра АА1. б) Найдите высоту призмы ABCDA1B1C1D1, если площадь её основания ABCD равна 4, а площадь ромба MB1KD равна 4sqrt2
Дана правильная четырёхугольная призма ABCDA1B1C1D1. Плоскость α проходит через вершины В1 и D и пересекает ребра АА1 и СС1 в точках М и К соответственно ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 14
Основанием четырёхугольной пирамиды SABCD является квадрат ABCD, ребро SA перпендикулярно плоскости основания. Через середины рёбер BC и CD параллельно прямой SC проведена плоскость альфа. а) Докажите, что точка пересечения плоскости альфа с ребром AS делит это ребро в отношении 1:3, считая от вершины S. б) Найдите площадь сечения пирамиды SABCD плоскостью альфа, если AB=4, AS=3sqrt2
Основанием четырёхугольной пирамиды SABCD является квадрат ABCD, ребро SA перпендикулярно плоскости основания ! 36 вариантов ЕГЭ 2024 Ященко ФИПИ школе, Вариант 7 Задание 14
На рёбрах AB и A1C1 правильной треугольной призмы ABCA1B1C1 отметили соответственно точки T и K так, что AT:TB=1:2 и A1K=KC1. Через точки K и C параллельно прямой TA1 проведена плоскость α. а) Докажите, что точка пересечения плоскости α с ребром AB делит это ребро в отношении 2:1, считая от точки A. б) Найдите площадь сечения призмы ABCA1B1C1 плоскостью α, если AB=6sqrt7, а A1A=3
Докажите, что точка пересечения плоскости α с ребром AB делит это ребро в отношении 2:1, считая от точки A ! 36 вариантов ЕГЭ 2024 Ященко ФИПИ школе, Вариант 6 Задание 14
На рёбрах AB и B1C1 правильной треугольной призмы ABCA1B1C1 отметили соответственно точки T и K так, что AT:TB=2:1 и B1K=KC1. Через точки K и C параллельно прямой TB1 проведена плоскость α. а) Докажите, что точка пересечения плоскости α с ребром AB является серединой отрезка AT. б) Найдите площадь сечения призмы ABCA1B1C1 плоскостью α, если AB=42, а AA1=3sqrt7
На рёбрах AB и B1C1 правильной треугольной призмы ABCA1B1C1 отметили соответственно точки T и K так, что AT:TB=2:1 и B1K=KC1 ! 36 вариантов ЕГЭ 2024 Ященко ФИПИ школе, Вариант 5 Задание 14
Основанием правильной треугольной пирамиды PABC является треугольник ABC, AP =1,3AB. Через точку A перпендикулярно апофеме грани BCP проведена плоскость альфа. а) Докажите, что плоскость альфа делит апофему грани BCP в отношении 119:25, считая от точки P. б) Найдите угол между прямой AC и плоскостью альфа
Основанием правильной треугольной пирамиды PABC является треугольник ABC, AP =1,3AB ! 36 вариантов ЕГЭ 2024 Ященко ФИПИ школе, Вариант 3 Задание 14
Ребро AD пирамиды DABC равно 6, а все остальные рёбра равны 5. а) Докажите, что прямые AD и BC перпендикулярны. б) Найдите расстояние между прямыми AD и BC
Ребро AD пирамиды DABC равно 6, а все остальные рёбра равны 5 ! Найдите расстояние между AD и BC # Московский пробник 14-12-2023 Задание 14
В правильной треугольной пирамиде SABC сторона основания AB равна 10, а боковое ребро SA равно 7. На рёбрах AB и SC отмечены точки L и N соответственно, причём AL : LB = SN : NC =1 : 4. Плоскость α содержит прямую LN и параллельна прямой BC. а) Докажите, что плоскость α параллельна прямой SA. б) Найдите угол между плоскостями α и SBC
Докажите, что плоскость альфа параллельна прямой SA ! В правильной треугольной пирамиде SABC сторона основания AB равна 10, а боковое ребро SA равно 7 # Тренировочная работа №2 по математике 11 класс 13.12.2023 Вариант МА2310209 Задание 14
В правильной треугольной пирамиде MABC двугранный угол при основании равен arctg2. Через точку K ребра MC и вершины A и B проходит плоскость альфа так, что площадь сечения пирамиды плоскостью альфа относится к площади основания как 1 : sqrt2. а) Докажите, что прямая MC перпендикулярна плоскости альфа. б) Найдите объём пирамиды MABK, если объём пирамиды MABC равен 24sqrt7
В правильной треугольной пирамиде MABC двугранный угол при основании равен arctg2 ! 50 вариантов заданий 2024 Ященко, Вариант 11 Задание 14
В правильной треугольной пирамиде SABC через середины боковых рёбер SA и SB перпендикулярно основанию ABC проведена плоскость альфа. а) Докажите, что плоскость альфа делит медиану CE основания пирамиды в отношении 5:1, считая от вершины C. б) Найдите объём пирамиды с вершиной в точке C, основанием которой служит сечение пирамиды SABC плоскостью альфа, если AB=60, SA=37
В правильной треугольной пирамиде SABC через середины боковых рёбер SA и SB перпендикулярно основанию ABC проведена плоскость альфа ! 50 вариантов заданий 2024 Ященко, Вариант 6 Задание 14
В тетраэдре АВСD противоположные ребра попарно равны. Точки М, N и К – середины боковых ребер BD, AC и DC соответственно. Через точку К проведена секущая плоскость alpha, параллельная ребрам BD и AC. А) Докажите, что прямая MN перпендикулярна секущей плоскости. Б) Найдите расстояние от точки М до плоскости alpha, если AC=BD=14, BC=AD=13, AB=CD=15
В тетраэдре АВСD противоположные ребра попарно равны. Точки М, N и К – середины боковых ребер BD, AC и DC соответственно ! Тренировочный вариант 433 от Ларина Задание 14
В пирамиде ABCD рёбра DA, DB и DC попарно перпендикулярны, а AB=BC=AC=5sqrt2. а) Докажите, что BD=CD. б) На рёбрах DA и DC отмечены точки M и N соответственно, причём DM:MA=DN:NC=2:3. Найдите площадь сечения MNB
В пирамиде ABCD рёбра DA, DB и DC попарно перпендикулярны, а AB=BC=AC=5sqrt2 ! Демонстрационный вариант ЕГЭ 2024 профиль Задание 14
Дана пирамида SABCD, в основании которой лежит прямоугольник ABCD. Сечение пирамиды - трапеция KLMN, причём точки K, L, M и N лежат на рёбрах SB, SA, SD и SC соответственно. Известно, что основания этой трапеции KL = 4, MN = 3, а SK : KB = 2 : 1. a) Докажите, что точки M и N – середины рёбер SD и SC. б) Пусть Н – точка пересечения диагоналей прямоугольника ABCD, а SH – высота пирамиды SABCD. Найдите SH, если известно, что площадь прямоугольника ABCD равна 48, а площадь трапеции KLMN равна 24
Дана пирамида SABCD, в основании которой лежит прямоугольник ABCD. Сечение пирамиды - трапеция KLMN, причём точки K, L, M и N лежат на рёбрах SB, SA, SD и SC соответственно ! ЕГЭ 2023 по математике (резервный день Москва 01-07-2023 Задание 13 # Условие пункта б) ... площадь трапеции KLMN равна 24,5 ? Надо уточнить
Ребро основания правильной треугольной пирамиды равно sqrt6, высота пирамиды равна sqrt7. Плоскость pi перпендикулярна одному из рёбер пирамиды и делит её в отношении 1:2, считая от вершины. Найдите отношение в котором плоскость pi делит объём пирамиды
Ребро основания правильной треугольной пирамиды равно sqrt6, высота пирамиды равна sqrt7. Плоскость pi ! ДВИ в МГУ 2023 - 6 поток, Вариант 237 Задание 7
Дан куб с ребром 1, нижним основанием ABCD и боковыми рёбрами AA1, BB1, CC1, DD1. На рёбрах A1D1, BB1, CC1, AD отмечены соответственно точки K, L, M, N, так что A1K=KD1, BL=LB1=7:1, CM:MC1=DN:NA=4:3. Найдите площадь сечения тетраэдра KLMN, параллельного рёбрам KL и MN, имеющего форму ромба
Дан куб с ребром 1, нижним основанием ABCD и боковыми рёбрами AA1, BB1, CC1, DD1. На рёбрах A1D1, BB1, CC1, AD отмечены соответственно точки K, L, M, N ! ДВИ в МГУ 2023 - 5 поток, Вариант 236 Задание 7
Плоские углы при вершине правильной четырёхугольной пирамиды равны 30°. Найдите длину ребра основания пирамиды, если известно, что радиус сферы, вписанной в эту пирамиду равен 1
Плоские углы при вершине правильной четырёхугольной пирамиды равны 30°. Найдите длину ребра основания пирамиды ! ДВИ в МГУ 2023 - 4 поток, Вариант 235 Задание 7
Загрузка...
Новое на сайте
6/20/2024 6:00:00 PM ЕГЭ по математике резервный день 20-06-2024 🔥
ЕГЭ по математике резервный день 20-06-2024 🔥
Начинаем разбор заданий ЕГЭ по математике резервного дня. Варианты Востока, Запада, Центра (обновляется...)
6/6/2024 6:14:00 PM ОГЭ по математике (основная волна) 06-06-2024
ОГЭ по математике (основная волна) 06-06-2024
Разбор заданий вариантов, решения и ответы
5/31/2024 8:42:00 PM ЕГЭ по математике (основная волна) 31.05.2024
ЕГЭ по математике (основная волна) 31.05.2024
Разбор заданий ЕГЭ по математике профильного уровня. Варианты Востока, Запада, Центра
К началу страницы