279 тренировочный вариант от Ларина

Показаны 7 из 7 задач

?
В это поле можно ввести текст для поиска по вхождению полной подстроки:
Например:
пирам - будут найдены все условия задач, содержащие слова "пирамида", "Пирамиду","пирамиды" и тд.
треугольной пирамиды - будут найдены все условия задач, содержащие точную подстроку "треугольной пирамиды"
log - будут найдены все условия задач с логарифмами.
Надо иметь ввиду, что фильтрация будет происходить по текущему разделу.
Если необходимо найти более сложные строки, например, содержащие одновременно слова "Объём" "треугольной" "середины" "рёбер" нужно воспользоваться расширенным режимом поиска - сменив опцию "Содерж" на % из списка. Символ подстановки % соответствует любому количеству любых символов. Далее вводим текст %Объём%треуг%серед%бер% и примененяем фильтр, нажав ENTER (или жёлтую кнопку "Применить фильтр по условиям")
Две окружности пересекаются в точках А и В. Через точку В проведена прямая, пересекающая окружности в точках С и D, лежащих по разные стороны от прямой AB. Касательные к этим окружностям в точках С и D пересекаются в точке E. а) Докажите, что вокруг четырехугольника ACED можно описать окружность. б) Найдите AE, если AB=10, АС=16, AD=15
Две окружности пересекаются в точках А и В. Через точку В проведена прямая, пересекающая окружности в точках С и D, лежащих по разные стороны от прямой AB ! ларин егэ по математике 2019 профильный уровень Вариант 279 Задание 16
В правильной треугольной призме ABCA1B1C1 сторона AB основания равна 6, а боковое ребро AA1 равно 3. На ребрах AB и B1C1 отмечены точки K и L соответственно, причём AK=B1L=2. Точка M – середина ребра A1C1. Плоскость gamma параллельна прямой AC и содержит точки K и L. а) Докажите, что прямая BM перпендикулярна плоскости gamma. б) Найдите объём пирамиды, вершина которой – точка M, а основание – сечение данной призмы плоскостью gamma
Тренировочный вариант 279 от Ларина Задание 14 # Задача-Аналог   1603  
а) Решите неравенствоlog_{3}(x+1/x)-2log_{9}(x-1) <= log_{3}(3x+4)-log_{27}(x^6)
Тренировочный вариант 279 от Ларина Задание 15
а) Решите уравнение sin(pi-x)-cos(pi/2+x)=-1 б) Укажите корни этого уравнения, принадлежащие отрезку[-pi; (3pi)/2].
Тренировочный вариант 279 от Ларина Задание 13
Найдите наибольшее значение функции y=14*sqrt(2)*sin(x)-14x+3.5pi+3 на отрезке [0; pi/2].
Найдите наибольшее значение функции y=14*sqrt(2)*sin(x)-14x+3.5pi+3 ! Тренировочный вариант 279 от Ларина Задание 12
Расстояние в 180 км между пунктами А и Б автомобиль проехал со средней скоростью 40 км/ч. Часть пути по ровной дороге он ехал со скоростью 80 км/ч, а другую часть, по бездорожью, со скоростью 20 км/ч. Какое расстояние автомобиль проехал по ровной дороге?
Расстояние в 180 км между пунктами А и Б автомобиль проехал со средней скоростью 40 км/ч ! Тренировочный вариант 279 от Ларина Задание 11
При каких значениях параметра а неравенство a*(4-sin(x))^4-3+(cos(x))^2+a>0 выполняется для любых х. У Ларина в 279 варианте a(1+(4-sin(x))^4) > 3-cos^2(x).
При каких значениях параметра а неравенство выполняется для любых x ! Тренировочный вариант 279 от Ларина Задание 18 # Тригонометрическое неравенство с параметром 2013/14 уч.г.
Загрузка...
Новое на сайте
11/6/2024 12:15:00 PM 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
10/24/2024 10:25:00 PM 30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
Решаем задачи из пособия 2025 года "Математика 30 вариантов ЕГЭ Базовый уровень ФИПИ школе Ященко"
10/24/2024 8:25:00 PM Математика 36 вариантов ОГЭ 2025 ФИПИ
Математика 36 вариантов ОГЭ 2025 ФИПИ
Решаем задания типовых экзаменационных вариантов пособия 36 вариантов ОГЭ 2025 ФИПИ школе под редакцией Ященко И В
К началу страницы