ЕГЭ по математике основная волна 01-06-2023

Показаны 20 из 26 задач

?
В это поле можно ввести текст для поиска по вхождению полной подстроки:
Например:
пирам - будут найдены все условия задач, содержащие слова "пирамида", "Пирамиду","пирамиды" и тд.
треугольной пирамиды - будут найдены все условия задач, содержащие точную подстроку "треугольной пирамиды"
log - будут найдены все условия задач с логарифмами.
Надо иметь ввиду, что фильтрация будет происходить по текущему разделу.
Если необходимо найти более сложные строки, например, содержащие одновременно слова "Объём" "треугольной" "середины" "рёбер" нужно воспользоваться расширенным режимом поиска - сменив опцию "Содерж" на % из списка. Символ подстановки % соответствует любому количеству любых символов. Далее вводим текст %Объём%треуг%серед%бер% и примененяем фильтр, нажав ENTER (или жёлтую кнопку "Применить фильтр по условиям")
Дана пирамида SABCD, в основании которой лежит прямоугольник ABCD. Сечение пирамиды - трапеция KLMN, причём точки K, L, M и N лежат на рёбрах SB, SA, SD и SC соответственно. Известно, что основания этой трапеции KL = 4, MN = 3, а SK : KB = 2 : 1. a) Докажите, что точки M и N – середины рёбер SD и SC. б) Пусть Н – точка пересечения диагоналей прямоугольника ABCD, а SH – высота пирамиды SABCD. Найдите SH, если известно, что площадь прямоугольника ABCD равна 48, а площадь трапеции KLMN равна 24
Дана пирамида SABCD, в основании которой лежит прямоугольник ABCD. Сечение пирамиды - трапеция KLMN, причём точки K, L, M и N лежат на рёбрах SB, SA, SD и SC соответственно ! ЕГЭ 2023 по математике (резервный день Москва 01-07-2023 Задание 13 # Условие пункта б) ... площадь трапеции KLMN равна 24,5 ? Надо уточнить
Найдите все значения параметра а, при которых система уравнений { ((xy-x+8)*sqrt(y-x+8)=0), (y=2x+a) :} имеет ровно 2 различных решения
Найдите все значения параметра а, при которых система уравнений { (xy-x+8)*sqrt(y-x+8)=0 y=2x+a имеет ровно 2 различных решения ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 17
а) Решите уравнение 2sin^3(x)=sqrt(3)cos^2(x)+2sin(x) б) Найдите все корни этого уравнения, принадлежащие отрезку [2pi; (7pi)/2].
а) Решите уравнение 2sin^3 x =sqrt3 cos^2 x +2sinx ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 12
а) Решите уравнение cos(x)cos(2x)=sqrt(3)sin^2(x)+cos(x)
а) Решите уравнение cosx cos2x =sqrt3 sin^2 x +cosx ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 12 № без пункта б)
а) Решите уравнение 4sin^3(x)=3cos(x-pi/2)
а) Решите уравнение 4sin^3 x =3cos(x-pi/2) ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 12 № без пункта б)
а) Решите уравнение 2sin^2(x)cos(x)+sqrt(2)cos^2(x)=sqrt(2) б) Найдите все корни этого уравнения, принадлежащие отрезку [-(7pi)/2; -2pi].
а) Решите уравнение 2sin^2 x cos x+ sqrt2 cos^2 x=sqrt2 ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 12
Найдите все значения параметра а, при которых система уравнений { ((x^2+y^2+6x)*sqrt(x+y+6)=0), (y=x+a) :} имеет ровно 2 различных решения
Найдите все значения параметра а, при которых система уравнений { (x^2+y^2+6x) sqrt(x+y+6)=0 y=x+a имеет ровно 2 различных решения ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 17
а) Решите уравнение cos(x)*cos(2x)=sqrt(2)sin^2(x)+cos(x) б) Найдите все корни этого уравнения, принадлежащие отрезку [-(5pi)/2; -pi].
а) Решите уравнение cos x *cos2x =sqrt2 sin^2 x +cos x ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 12
Найдите все значения параметра а, при которых система уравнений { ((x^2-6x-y+2)*sqrt(x-y+2)=0), (y=ax+a) :} имеет ровно 2 различных решения
Найдите все значения параметра а, при которых система уравнений {(x^2-6x-y+2)*sqrt(x-y+2) =0, y=ax+a имеет ровно 2 различных решения ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 17
Найдите все значения параметра а, при которых система уравнений { ((x^2-7x-y+4)*sqrt(x-y+4)=0), (y=-x+a) :}. имеет ровно 2 различных решения
Найдите все значения параметра а, при которых система уравнений {(x^2-7x-y+4)*sqrt(x-y+4) =0, y=-x+a имеет ровно 2 различных решения ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 17
Биссектриса AM острого угла A равнобедренной трапеции ABCD делит боковую сторону CD пополам. Отрезок DN перпендикулярен отрезку AM и делит сторону AB в отношении AN : NB = 7 : 1. а) Докажите, что прямые BM и CN перпендикулярны. б) Найдите длину отрезка MN, если площадь трапеции равна 4sqrt55
Биссектриса AM острого угла A равнобедренной трапеции ABCD делит боковую сторону CD пополам ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 16 # Задача-аналог   4496  
Решите неравенство (log_{3}(3-x)-log_{3}(x+2)) / ((log_{3}(x^2))^2+log_{3}(x^4)+1) >=0
Решите неравенство log3 (3-x) - log3 (x+2) / log^2 3 x^2 +log3 x^4+1 >= 0 ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 14
Решите неравенство log_{8}(x^3-3x^2+3x-1) >= log_{2}(x^2-1)-5
Решите неравенство log8 (x3- 3x2+3x-1) >= log2 (x2-1)-5 ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 14
Решите неравенство log_{0.2}(x^3-2x^2-4x+8) <= log_{0.04}((x-2)^4)
Решите неравенство log0,2 (x^3-2x^2-4x+8) <= log0.04 (x-2)^4 ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 14
Решите неравенство log_{25}((x-4)(x^2-2x-8))+1 >=. 0.5log_{5}((x-4)^2)
Решите неравенство log25 ((x-4)(x^2-2x-8)) +1 >= 0,5log5 (x-4)^2 ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 14
В правильной треугольной призме ABCA1B1C1 точка M является серединой ребра BB1, а точка N - середина ребра A1C1. Плоскость альфа, параллельная прямым AM и B1N, проходит через середину отрезка MN. a) Докажите, что плоскость альфа проходит через середину отрезка B1M. б) Найдите площадь сечения призмы ABCA1B1C1 плоскостью альфа, если все рёбра призмы имеют длину 4
В правильной треугольной призме ABCA1B1C1 точка M является серединой ребра BB1, а точка N - середина ребра A1C1 ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 13
Дана прямая призма, в основании которой равнобедренная трапеция с основаниями AD = 5 и BC = 3. M - точка, которая делит сторону A1D1 в отношении 2 : 3, К - середина DD1. a) Доказать, что MCК || BD. б) Найти тангенс угла между плоскостью MKC и плоскостью основания, если ∠ADC = 60°, а ∠CKM = 90°
Дана прямая призма, в основании которой равнобедренная трапеция с основаниями AD = 5 и BC = 3. M - точка, которая делит сторону A1D1 в отношении ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 13
Основанием прямой призмы ABCDA1B1C1D1 является параллелограмм. На рёбрах A1B1, B1C1 и BC отмечены точки M, K и N соответственно, причем B1K : KC1 = 1 : 2, а AMKN - равнобедренная трапеция с основаниями 2 и 3. а) Докажите, что N - середина BC. б) Найдите площадь трапеции AMKN, если объем призмы ABCDA1B1C1D1 равен 12, а ее высота равна 2
Основанием прямой призмы ABCDA1B1C1D1 является параллелограмм. На рёбрах A1B1, B1C1 и BC отмечены точки M, K и N ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 13
ABC равносторонний треугольник. На стороне AC выбрана точка M, серединный перпендикуляр к отрезку BM пересекает сторону AB в точке E, а сторону BC в точке K. а) Доказать что угол AEM равен углу CMK. б) Найти отношение площадей треугольников AEM и CMK, если AM : CM = 1 : 4
ABC равносторонний треугольник. На стороне AC выбрана точка M, серединный перпендикуляр к отрезку BM ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 16
Дана равнобедренная трапеция ABCD с основаниями AD и BC. Биссектрисы углов BAD и BCD пересекаются в точке O. Точки M и N отмечены на боковых сторонах AB и CD соответственно. Известно, что AM = MO, CN = NO. а) Докажите, что точки M, N и O лежат на одной прямой. б) Найдите AM : MB, если известно, что AO = OC и BC : AD = 1 : 7
Дана равнобедренная трапеция ABCD с основаниями AD и BC. Биссектрисы углов BAD и BCD пересекаются в точке O ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 16
Загрузка...
Новое на сайте
11/6/2024 12:15:00 PM 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
10/24/2024 10:25:00 PM 30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
Решаем задачи из пособия 2025 года "Математика 30 вариантов ЕГЭ Базовый уровень ФИПИ школе Ященко"
10/24/2024 8:25:00 PM Математика 36 вариантов ОГЭ 2025 ФИПИ
Математика 36 вариантов ОГЭ 2025 ФИПИ
Решаем задания типовых экзаменационных вариантов пособия 36 вариантов ОГЭ 2025 ФИПИ школе под редакцией Ященко И В
К началу страницы