Критерии

Показаны 20 из 168 задач

?
В это поле можно ввести текст для поиска по вхождению полной подстроки:
Например:
пирам - будут найдены все условия задач, содержащие слова "пирамида", "Пирамиду","пирамиды" и тд.
треугольной пирамиды - будут найдены все условия задач, содержащие точную подстроку "треугольной пирамиды"
log - будут найдены все условия задач с логарифмами.
Надо иметь ввиду, что фильтрация будет происходить по текущему разделу.
Если необходимо найти более сложные строки, например, содержащие одновременно слова "Объём" "треугольной" "середины" "рёбер" нужно воспользоваться расширенным режимом поиска - сменив опцию "Содерж" на % из списка. Символ подстановки % соответствует любому количеству любых символов. Далее вводим текст %Объём%треуг%серед%бер% и примененяем фильтр, нажав ENTER (или жёлтую кнопку "Применить фильтр по условиям")
Из пары натуральных чисел (a; b), где a > b, за один ход получают пару (a + b; a − b). а) Можно ли за несколько таких ходов получить из пары (100;1) пару, большее число в которой равно 400? б) Можно ли за несколько таких ходов получить из пары (100;1) пару (806; 788)? в) Какое наименьшее a может быть в паре (a; b), из которой за несколько ходов можно получить пару (806; 788)?
Из пары натуральных чисел (a; b), где a > b, за один ход получают пару (a + b; a − b) ! Демонстрационный вариант ЕГЭ 2024 профиль Задание 19
В пирамиде ABCD рёбра DA, DB и DC попарно перпендикулярны, а AB=BC=AC=5sqrt2. а) Докажите, что BD=CD. б) На рёбрах DA и DC отмечены точки M и N соответственно, причём DM:MA=DN:NC=2:3. Найдите площадь сечения MNB
В пирамиде ABCD рёбра DA, DB и DC попарно перпендикулярны, а AB=BC=AC=5sqrt2 ! Демонстрационный вариант ЕГЭ 2024 профиль Задание 14
КИМ Демовариант ЕГЭ 2024 ФИПИ по математике профильного уровня. Критерии с решениями второй части
КИМ Демонстрационного варианта ЕГЭ 2024 ФИПИ по математике профильного уровня ! Критерии. Решения заданий второй части
В правильной треугольной призме ABCA1B1C1 длина ребра основания равна 4, а длина бокового ребра равна 2. а) Докажите, что сечение призмы плоскостью α , проходящей через середину ребра АВ перпендикулярно отрезку, соединяющему середины рёбер ВС и А1В1, делит ребро АС в отношении 1:3, считая от вершины А. б) Найдите площадь сечения призмы плоскостью α
В правильной треугольной призме ABCA1B1C1 длина ребра основания равна 4, а длина бокового ребра равна 2 ! а) Докажите, что сечение призмы плоскостью α, проходящей через середину ребра АВ перпендикулярно отрезку # Статград Тренировочная работа №5 по математике 27-04-2023 11 класс Вариант МА2210509 Задание 13 # Два способа решения пункта б
15 января планируется взять кредит в банке на 13 месяцев. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на 4 % по сравнению с концом предыдущего месяца; — со 2-го по 14-е число каждого месяца нужно внести один платёж для погашения долга; — 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца. Известно, что седьмой платёж равен 64 тыс. рублей. Найдите сумму всех платежей, которые будут выплачены банку в течение всего срока кредитования
15 января планируется взять кредит в банке на 13 месяцев ! Статград Тренировочная работа №5 по математике 27-04-2023 11 класс Вариант МА2210509 Задание 15
Каждый из группы учащихся сходил в зоопарк или в музей, при этом возможно, что кто-то из них сходил и в зоопарк, и в музей. Известно, что в музее мальчиков было не более 5/13 от общего числа учащихся группы, посетивших музей, а в зоопарке мальчиков было не более 1/4 от общего числа учащихся группы, посетивших зоопарк. а) Могло ли быть в группе 12 мальчиков, если дополнительно известно, что всего в группе было 25 учащихся? б) Какое наибольшее количество мальчиков могло быть в группе, если дополнительно известно, что всего в группе было 25 учащихся? в) Какую наименьшую долю могли составлять девочки от общего числа учащихся в группе без дополнительного условия пунктов а и б?
Каждый из группы учащихся сходил в зоопарк или в музей, при этом возможно, что кто-то из них сходил и в зоопарк, и в музей ! Статград Тренировочная работа №5 по математике 27-04-2023 11 класс Задание 18
В треугольнике ABC проведены биссектрисы BM и CN. Оказалось, что точки B, C, M и N лежат на одной окружности. а) Докажите, что треугольник ABC равнобедренный. б) Пусть P — точка пересечения биссектрис треугольника ABC. Найдите площадь четырёхугольника AMPN , если MN : BC = 3:7, а BN=6
В треугольнике ABC проведены биссектрисы BM и CN. Оказалось, что точки B, C, M и N лежат на одной окружности ! Статград Тренировочная работа №5 по математике 27-04-2023 11 класс Вариант МА2210509 Задание 16 # Приведенорешениеcolor{blue} text{Приведено решение 1797} задачи- аналога   1797  
Оценки экспертов решений задания 13 ЕГЭ по математике профильного уровня. Задание № 13 – тригонометрическое, логарифмическое или показательное уравнение.
Критерии оценивания решений задания 13 ЕГЭ по математике профильного уровня ! Примеры оценивания реальных работ 2016-2021 гг # Приведены типы заданий с развёрнутым ответом, используемые в КИМ ЕГЭ по математике и критерии оценки выполнения заданий с развёрнутым ответом, приводятся примеры оценивания выполнения заданий и даются комментарии, объясняющие выставленную оценку
Оценки экспертов решений задания 14 ЕГЭ по математике профильного уровня. Задание 14 – стереометрическая задача, она разделена на пункты а и б. В пункте а нужно доказать геометрический факт, в пункте б найти (вычислить) геометрическую величину.
Критерии оценивания решений задания 14 ЕГЭ по математике профильного уровня ! Примеры оценивания реальных работ 2016-2021 гг # Приведены типы заданий с развёрнутым ответом, используемые в КИМ ЕГЭ по математике и критерии оценки выполнения заданий с развёрнутым ответом, приводятся примеры оценивания выполнения заданий и даются комментарии, объясняющие выставленную оценку
Оценки экспертов решений задания 15 ЕГЭ по математике профильного уровня. Задание № 15 – это неравенство: дробно-рациональное, логарифмическое или показательное.
Критерии оценивания решений задания 15 ЕГЭ по математике профильного уровня ! Примеры оценивания реальных работ 2016-2021 гг # Приведены типы заданий с развёрнутым ответом, используемые в КИМ ЕГЭ по математике и критерии оценки выполнения заданий с развёрнутым ответом, приводятся примеры оценивания выполнения заданий и даются комментарии, объясняющие выставленную оценку
Оценки экспертов решений задания 16 ЕГЭ по математике профильного уровня. Задание № 16 – это текстовая задача с экономическим содержанием.
Критерии оценивания решений задания 16 ЕГЭ по математике профильного уровня ! Примеры оценивания реальных работ 2016-2021 гг # Приведены типы заданий с развёрнутым ответом, используемые в КИМ ЕГЭ по математике и критерии оценки выполнения заданий с развёрнутым ответом, приводятся примеры оценивания выполнения заданий и даются комментарии, объясняющие выставленную оценку
Оценки экспертов решений задания 17 ЕГЭ по математике профильного уровня. Задание № 17 - это планиметрическая задача. В пункте а теперь нужно доказать геометрический факт, в пункте б - найти (вычислить) геометрическую величину.
Критерии оценивания решений задания 17 ЕГЭ по математике профильного уровня ! Примеры оценивания реальных работ 2016-2021 гг # Приведены типы заданий с развёрнутым ответом, используемые в КИМ ЕГЭ по математике и критерии оценки выполнения заданий с развёрнутым ответом, приводятся примеры оценивания выполнения заданий и даются комментарии, объясняющие выставленную оценку
Оценки экспертов решений задания 18 ЕГЭ по математике профильного уровня. Задание № 18 - это уравнение, неравенство или их системы с параметром. Задачи с параметром допускают весьма разнообразные способы решения. Наиболее распространёнными из них являются: – чисто алгебраический способ решения; – способ решения, основанный на построении и исследовании геометрической модели данной задачи; – функциональный способ, в котором могут быть и алгебраические, и геометрические элементы, но базовым является исследование некоторой функции. Зачастую (но далеко не всегда) графический метод более ясно ведёт к цели. Кроме того, в конкретном тексте решения вполне могут встречаться элементы каждого из трёх перечисленных способов
Критерии оценивания решений задания 18 ЕГЭ по математике профильного уровня ! Примеры оценивания реальных работ 2016-2021 гг # Приведены типы заданий с развёрнутым ответом, используемые в КИМ ЕГЭ по математике и критерии оценки выполнения заданий с развёрнутым ответом, приводятся примеры оценивания выполнения заданий и даются комментарии, объясняющие выставленную оценку
Оценки экспертов решений задания 19 ЕГЭ по математике профильного уровня. Задание 19 проверяет достижение следующих целей изучения математики на профильном уровне: "развитие логического мышления, алгоритмической культуры, пространственного воображения, математического мышления и интуиции, творческих способностей, необходимых для продолжения образования и для самостоятельной деятельности в области математики и её приложений в будущей профессиональной деятельности
Критерии оценивания решений задания 19 ЕГЭ по математике профильного уровня ! Примеры оценивания реальных работ 2016-2021 гг # Приведены типы заданий с развёрнутым ответом, используемые в КИМ ЕГЭ по математике и критерии оценки выполнения заданий с развёрнутым ответом, приводятся примеры оценивания выполнения заданий и даются комментарии, объясняющие выставленную оценку
В основании пирамиды SABCD лежит трапеция ABCD, BC -меньшее основание, O - точка пересечения диагоналей, точки M и N - середины боковых сторон AB и CD соответственно. Через точки M и N проведена плоскость α параллельно прямой SO. а) Докажите, что сечением пирамиды SABCD плоскостью α является трапеция. б) Найдите площадь сечения пирамиды SABCD плоскостью α, если AD=12, BC=10, SO=9, а прямая SO перпендикулярна прямой AD
В основании пирамиды SABCD лежит трапеция ABCD, BC -меньшее основание ! ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 13 Санкт-Петербург, Центр # Решение от netka (Казань) # Задача-Аналог   3357  
В основании пирамиды SABCD лежит трапеция ABCD с большим основанием AD. Диагонали пересекаются в точке O. Точки M и N - середины боковых сторон AB и CD соответственно. Плоскость α проходит через точки M и N параллельно прямой SO. а) Докажите, что сечение пирамиды SABCD плоскостью α является трапецией. б) Найдите площадь сечения пирамиды SABCD плоскостью α, если AD=7, BC=5, SO=14, а прямая SO перпендикулярна прямой AD
В основании пирамиды SABCD лежит трапеция ABCD с большим основанием AD. Диагонали пересекаются в точке O ! ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 13 Санкт-Петербург, Центр # Задача-Аналог   3361  
а) Решите уравнение 1/(cos^2(x))+tan(x)+sqrt(3). tan(pi-x)-sqrt(3)-1=0 б) Укажите корни этого уравнения, принадлежащие отрезку [(3pi)/2;3pi].
а) Решите уравнение 1/cos 2 x +tgx + sqrt3 tg(pi-x) -sqrt3 -1 =0 ! Тренировочная работа №1 по МАТЕМАТИКЕ 10-11 класс 27.01.2022 Вариант МА2100109 Задание 12
В июле 2022 года планируется взять кредит в банке на четыре года в размере S млн рублей, где S - целое число. Условия его возврата таковы: - каждый январь долг увеличивается на 15 % по сравнению с концом предыдущего года; - с февраля по июнь каждого года необходимо выплатить одним платежом часть долга; - в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей. Найдите наибольшее значение S , при котором каждая из выплат будет меньше 3 млн рублей
В июле 2022 года планируется взять кредит в банке на четыре года в размере S млн рублей, где S - целое число ! Тренировочная работа №1 по МАТЕМАТИКЕ 10-11 класс 27.01.2022 Вариант МА2100109 Задание 15
Найдите все значения a, при каждом из которых уравнение x^2-a*x*sqrt(3-2x-x^2)+a^2=0 имеет хотя бы одно решение
Найдите все значения a, при каждом из которых уравнение x2 -ax sqrt(3- 2x -x2) +a2 имеет хотя бы одно решение ! Тренировочная работа №1 по МАТЕМАТИКЕ 10-11 класс 27.01.2022 Вариант МА2100109 Задание 17
Юра записывает на доске n-значное натуральное число, не используя цифру 0. Затем он записывает рядом ещё одно число, полученное из исходного перемещением первой цифры на последнее место. (Например, если n=3 и исходное число равно 123, то второе число равно 231.) После этого Юра находит сумму этих двух чисел. а) Может ли сумма чисел на доске равняться 2728, если n=4 ? б) Может ли сумма чисел на доске равняться 83 347, если n=5? в) При n=6 оказалось, что сумма чисел делится на 99. Сколько натуральных чисел от 925 111 до 925 999, которые Юра мог использовать в качестве исходного числа?
Юра записывает на доске n-значное натуральное число, не используя цифру 0 ! Тренировочная работа №1 по МАТЕМАТИКЕ 10-11 класс 27.01.2022 Вариант МА2100109 Задание 18
Загрузка...
Новое на сайте
11/6/2024 12:15:00 PM 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
10/24/2024 10:25:00 PM 30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
Решаем задачи из пособия 2025 года "Математика 30 вариантов ЕГЭ Базовый уровень ФИПИ школе Ященко"
10/24/2024 8:25:00 PM Математика 36 вариантов ОГЭ 2025 ФИПИ
Математика 36 вариантов ОГЭ 2025 ФИПИ
Решаем задания типовых экзаменационных вариантов пособия 36 вариантов ОГЭ 2025 ФИПИ школе под редакцией Ященко И В
К началу страницы