Реальныe варианты ЕГЭ по математике

Показаны 20 из 381 задач

?
В это поле можно ввести текст для поиска по вхождению полной подстроки:
Например:
пирам - будут найдены все условия задач, содержащие слова "пирамида", "Пирамиду","пирамиды" и тд.
треугольной пирамиды - будут найдены все условия задач, содержащие точную подстроку "треугольной пирамиды"
log - будут найдены все условия задач с логарифмами.
Надо иметь ввиду, что фильтрация будет происходить по текущему разделу.
Если необходимо найти более сложные строки, например, содержащие одновременно слова "Объём" "треугольной" "середины" "рёбер" нужно воспользоваться расширенным режимом поиска - сменив опцию "Содерж" на % из списка. Символ подстановки % соответствует любому количеству любых символов. Далее вводим текст %Объём%треуг%серед%бер% и примененяем фильтр, нажав ENTER (или жёлтую кнопку "Применить фильтр по условиям")
Решите неравенство (log_{2}(2x^2-17x+35)-1)/log_{7}(x+6) <= 0
Решите неравенство log_2 (2x^2 -17x+35) - 1 / log_7 (x+6) <= 0 ! ЕГЭ по математике резервный день 20.06.2024 профильный уровень Задание 15
Решите неравенство log_{5}(5x-27)/log_{5}(x-5) >= 1
Решите неравенство log_5 (5x-27)/log_5 (x-5) >= 1 ! ЕГЭ по математике резервный день 20.06.2024 профильный уровень Задание 15
а) Решите уравнение 3tan^2(x)-5/cos(x)+1=0 б) Укажите все корни этого уравнения, принадлежащие отрезку [-(7pi)/2; -2pi].
а) Решите уравнение 3tg^2 x -5/cosx +1= 0 ! ЕГЭ по математике резервный день 20.06.2024 профильный уровень Задание 13
Пятиугольник ABCDE вписан в окружность. Диагонали AD и BE пересекаются в точке М. Известно, что BCDM - параллелограмм. а) Докажите, что BC=DE. б) Найдите длину стороны AB, если известно, что DE=4, AD=7, BE=8 и AB > BC
Пятиугольник ABCDE вписан в окружность. Диагонали AD и BE пересекаются в точке М. Известно, что BCDM - параллелограмм ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 17
Решите неравенство (3^x+9)/(3^x-9)+(3^x-9)/(3^x+9) >= (4*3^(x+1)+144)/(9^x-81)
Решите неравенство 3^x+9 / 3^x-9 +3^x-9 / 3^x+9 >= 4*3^(x+1)+144 / 9^x-81 ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 15
а) Решите уравнение sin(2x)+sqrt(2)cos(x+pi)=0 б) Укажите все корни этого уравнения, принадлежащие отрезку [3pi; (9pi)/2].
а) Решите уравнение sin2x +sqrt2 cos(x+pi)=0 ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 13
а) Решите уравнение cos(2x)+sqrt(3)sin(x+pi)-1=0 б) Укажите все корни этого уравнения, принадлежащие отрезку [2pi; (7pi)/2].
а) Решите уравнение cos2x +sqrt3sin(x+pi)-1=0 ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 13
а) Решите уравнение 2cos^2(x)+3sin(x+pi)-3=0 б) Укажите все корни этого уравнения, принадлежащие отрезку [2pi; (7pi)/2].
а) Решите уравнение 2cos^2 x +3sin(x+pi)-3 = 0 ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 13
Решите неравенство (6*9^(x-1)-10)/(81^(x-1/2)-9) <= 1
Решите неравенство 6 9^x-1 -10 / 81^ x-1/2 -9 <= 1 ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 15
В правильной четырехугольной пирамиде SABCD с основанием ABCD точка O - центр основания пирамиды, точка M - середина ребра SC, точка K делит ребро BC в отношении BK:KC=3:2, а AB=4 и SO=2sqrt23. а) Докажите, что плоскость OMK параллельна прямой SA. б) Найдите длину отрезка, по которому плоскость OMK пересекает грань SAD
В правильной четырехугольной пирамиде SABCD с основанием ABCD точка O - центр основания пирамиды, точка M - середина ребра SC ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 14
Решите неравенство (7^x+7)/(7^x-7)+(7^x-7)/(7^x+7) >= (4*7^x+96)/(49^x-49)
Решите неравенство 7^x+7 / 7^x-7 + 7^x-7 / 7^x+7 >= 4*7^x+96 / 49^x-49 ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 15
В правильной треугольной пирамиде SABC с основанием АВС точки М и K - середины ребер АВ и SC соответственно, а точки N и L отмечены на ребрах SA и BC соответственно так, что отрезки МК и NL пересекаются, а 2AN = 3NS. а) Докажите, что прямые MN, KL и SB пересекаются в одной точке. б) Найдите отношение BL:LC
В правильной треугольной пирамиде SABC с основанием АВС точки М и K - середины ребер АВ и SC соответственно, а точки N и L отмечены на ребрах SA и BC соответственно так, что отрезки МК и NL пересекаются, а 2AN = 3NS ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 14 # Два способа решения: с теоремой Менелая и без неё
Решите неравенство 9^(x-1)/(9^(x-1)-1) >= 5/(9^x-1)+36/(81^x-10*9^x+9)
Решите неравенство 9^x-1 / 9^x-1 -1 >= 5 / 9^x-1 +36 / 81^x-10*9^x+9 ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 15
Решите неравенство 3^x-8-(2*3^(x+1)-19)/(9^x-5*3^x+6) <= 1/(3^x-3)
Решите неравенство 3^x-8- 2*3^x+1 -19 / 9^x-5*3^x+6 <= 1 / 3^x-3 ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 15
Найдите все значения а, при каждом из которых система уравнений {(abs(x)+abs(y)=a), (y=sqrt(x+4)) :}. имеет ровно два различных решения
Найдите все значения а, при каждом из которых система уравнений { abs(x)+abs(y)=a y=sqrt(x+4) имеет ровно два различных решения ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 18
Все рёбра правильной четырёхугольной пирамиды SABCD с основанием ABCD равны 4. Точка O - центр основания пирамиды. Плоскость, параллельная прямой SA и проходящая через точку O, пересекает рёбра SC и SD в точках M и N соответственно. Точка N делит ребро SD в отношении SN:ND=1:3. а) Докажите, что точка M - середина ребра SC. б) Найдите длину отрезка, по которому плоскость OMN пересекает грань SBC
Найдите длину отрезка, по которому плоскость OMN пересекает грань SBC ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 14
Найдите все значения а, при каждом из которых система уравнений { (4x-y+a=0), (abs(y)-x^2+2x=0) :}. имеет ровно два различных решения
Найдите все значения а, при каждом из которых система уравнений { 4x-y+a=0, abs(y)-x^2+2x=0 имеет ровно два различных решения ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 18
Окружность с центром в точке О касается сторон угла с вершиной N в точках А и В. Отрезок ВС - диаметр этой окружности. а) Докажите, что прямая АС параллельна биссектрисе угла ANB. б) Найдите длину отрезка NO, если известно, что АС=14 и АВ=48
Окружность с центром в точке О касается сторон угла с вершиной N в точках А и В. Отрезок ВС - диаметр этой окружности ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 17
Периметр треугольника АВС равен 36. Точки E и F - середины сторон АВ и ВС соответственно. Отрезок EF касается окружности, вписанной в треугольник АВС. а) Докажите, что АС=9. б) Найдите площадь треугольника АВС, если ∠ACB=90°
Периметр треугольника АВС равен 36. Точки E и F - середины сторон АВ и ВС соответственно ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 17
Пятиугольник ABCDE вписан в окружность. Известно, что AB=CD=4, a BC=DE=6. а) Докажите, что AC=CE. б) Найдите длину диагонали ВЕ, если AD=7
Пятиугольник ABCDE вписан в окружность. Известно, что AB=CD ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 17
Загрузка...
Новое на сайте
6/20/2024 6:00:00 PM ЕГЭ по математике резервный день 20-06-2024 🔥
ЕГЭ по математике резервный день 20-06-2024 🔥
Начинаем разбор заданий ЕГЭ по математике резервного дня. Варианты Востока, Запада, Центра (обновляется...)
6/6/2024 6:14:00 PM ОГЭ по математике (основная волна) 06-06-2024
ОГЭ по математике (основная волна) 06-06-2024
Разбор заданий вариантов, решения и ответы
5/31/2024 8:42:00 PM ЕГЭ по математике (основная волна) 31.05.2024
ЕГЭ по математике (основная волна) 31.05.2024
Разбор заданий ЕГЭ по математике профильного уровня. Варианты Востока, Запада, Центра
К началу страницы