признак Параллельности прямых

Показаны 20 из 22 задач

?
В это поле можно ввести текст для поиска по вхождению полной подстроки:
Например:
пирам - будут найдены все условия задач, содержащие слова "пирамида", "Пирамиду","пирамиды" и тд.
треугольной пирамиды - будут найдены все условия задач, содержащие точную подстроку "треугольной пирамиды"
log - будут найдены все условия задач с логарифмами.
Надо иметь ввиду, что фильтрация будет происходить по текущему разделу.
Если необходимо найти более сложные строки, например, содержащие одновременно слова "Объём" "треугольной" "середины" "рёбер" нужно воспользоваться расширенным режимом поиска - сменив опцию "Содерж" на % из списка. Символ подстановки % соответствует любому количеству любых символов. Далее вводим текст %Объём%треуг%серед%бер% и примененяем фильтр, нажав ENTER (или жёлтую кнопку "Применить фильтр по условиям")
На биссектрисе AL треугольника ABC отмечена точка M. Пусть A', B', C' – точки пересечения окружности, описанной около треугольника ABC, с прямыми AM, BM, CM соответственно, отличные от точек A, B, C. Пусть P – точка пересечения отрезков AB и A'C' и пусть Q – точка пересечения отрезков AC и A'B'. Найдите отношение площади треугольника ABC к площади треугольника APQ, если известно, что BC : PQ = 3
На биссектрисе AL треугольника ABC отмечена точка M. Пусть A', B', C' – точки пересечения окружности ! ДВИ в МГУ 2024 - 7 поток (резервный день), Вариант 247 Задание 5
В четырёхугольнике ABCD ВС=1, AD=7. На отрезках AB и CD отмечены соответственно точки E и F, такие что - четырёхугольники EBCF и AEFD вписанные и равновеликие. Найдите EF
В четырёхугольнике ABCD ВС=1, AD=7 ! Найдите EF
Окружность с центром в точке О касается сторон угла с вершиной N в точках А и В. Отрезок ВС - диаметр этой окружности. а) Докажите, что прямая АС параллельна биссектрисе угла ANB. б) Найдите длину отрезка NO, если известно, что АС=14 и АВ=48
Окружность с центром в точке О касается сторон угла с вершиной N в точках А и В. Отрезок ВС - диаметр этой окружности ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 17
Пятиугольник ABCDE вписан в окружность. Известно, что AB=CD=4, a BC=DE=6. а) Докажите, что AC=CE. б) Найдите длину диагонали ВЕ, если AD=7
Пятиугольник ABCDE вписан в окружность. Известно, что AB=CD ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 17
В параллелограмме ABCD со сторонами AD=12, AB=4 и углом A, равным 30°, проведены биссектрисы всех четырёх углов. a) Докажите, что четырёхугольник, ограниченный биссектрисами, - прямоугольник. б) Найдите площадь четырёхугольника, ограниченного биссектрисами
В параллелограмме ABCD со сторонами AD=12, AB=4 и углом A, равным 30° ! Найдите площадь четырёхугольника, ограниченного биссектрисами # Московский пробник 14-12-2023 Задание 17
В треугольнике АВС угол С острый, угол В равен 45° и АН – высота. Прямая АН пересекает описанную около треугольника окружность в точке D. А) Докажите, что прямые АВ и CD параллельны. Б) Найдите АС, если CB=8 и площадь треугольника CAD равна 12
В треугольнике АВС угол С острый, угол В равен 45° и АН – высота. Прямая АН пересекает описанную около треугольника окружность в точке D ! Тренировочный вариант 433 от Ларина Задание 17
Четырёхугольник ABCD со сторонами BC=7 и AB=CD=20 вписан в окружность радиусом R=16. а) Докажите, что прямые BC и AD параллельны. б) Найдите AD
Четырёхугольник ABCD со сторонами BC=7 и AB=CD=20 вписан в окружность радиусом R=16 ! 36 вариантов ФИПИ Ященко 2023 Вариант 3 Задание 16
Дан треугольник ABC. Точка O - центр вписанной в него окружности. На стороне BC отмечена такая точка M, что CM=AC и BM=AO. а) Докажите, что прямые АВ и OM параллельны. б) Найдите площадь четырёхугольника ABMO, если угол AСB прямой и AC=4
Дан треугольник ABC. Точка O - центр вписанной в него окружности ! Тренировочная работа №1 по МАТЕМАТИКЕ 10-11 класс 27.01.2022 Вариант МА2100109 Задание 16
В треугольнике ABC все стороны различны. Прямая, содержащая высоту BH треугольника ABC, вторично пересекает описанную около этого треугольника окружность в точке K. Отрезок BN - диаметр этой окружности. а) Докажите, что AC и KN параллельны. б) Найдите расстояние от точки N до прямой AC, если радиус описанной около треугольника ABC окружности равен С6sqrt6, /_BAC=30^@, /_ABС=105^@
Найдите расстояние от точки N до прямой AC, если радиус описанной около треугольника ABC окружности равен ! 36 вариантов ФИПИ Ященко 2022 Вариант 30 Задание 16 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 20 Задание 16 # Ошибка в ответе пособия у Ященко ФИПИ 36 вар 2021: color{red}{9} # Ошибка в ответе пособия у Ященко ФИПИ 36 вар 2022: color{red}{9}
Дан прямоугольный треугольник ABC с прямым углом C. На катете AC взята точка M. Окружность с центром O и диаметром CM касается гипотенузы в точке N. а) Докажите, что прямые MN и BO параллельны. б) Найдите площадь четырёхугольника BOMN, если CN=8 и AM:MC=1:3
Окружность с центром O и диаметром CM касается гипотенузы в точке N ! Тренировочный вариант 329 от Ларина Задание 16 # Решение - Елены Ильиничны Хажинской # Второй способ решения - см. Задачу-аналог   1342  
Окружность с центром О, вписанная в треугольник ABC, касается его сторон BC, AB и AC в точках K, L и М соответственно. Прямая КМ вторично пересекает в точке Р окружность радиуса АМ с центром А. а) Докажите, что прямая АР параллельна прямой ВС б) Пусть /_ABC = 90^@ , АМ = 3, СМ = 2, Q – точка пересечения прямых КМ и АВ, а Т – такая точка на отрезке РQ, что /_OAT = 45^@. Найдите QT
Окружность с центром О, вписанная в треугольник АВС, касается его сторон ! Тренировочный вариант 326 от Ларина Задание 16 # Решение - Елены Ильиничны Хажинской
Хорды АС и BD пересекаются в точке T. На хорде BC отложен отрезок CP, равный AD. Точки P и D равноудалены от хорды AC, а отрезок TP перпендикулярен хорде BC. А) Докажите, что площади четырехугольников ABPD и APCD равны. Б) Найдите эти площади, если площадь треугольника ATD равна трем
Хорды АС и BD пересекаются в точке T ! Тренировочный вариант 324 от Ларина Задание 16
Точка O1 – центр вписанной окружности равнобедренного треугольника ABC, а O2 – центр вневписанной окружности, касающейся основания BC. А) Докажите, что расстояние от середины отрезка O1O2 до точки С вдвое меньше O1O2. Б) Известно, что радиус первой окружности в пять раз меньше радиуса второй. В каком отношении точка касания первой окружности с боковой стороной треугольника делит эту сторону?
Точка O1 – центр вписанной окружности равнобедренного треугольника ABC, а O2 – центр вневписанной окружности ! Тренировочный вариант 323 от Ларина Задание 16 # Решение - Елены Ильиничны Хажинской
Дан куб ABCDA1B1C1D1 с ребром 2. а) Докажите, что плоскости A1BD и B1D1C параллельны. б) Найдите расстояние между плоскостями A1BD и B1D1C
Дан куб ABCDA1B1C1D1 с ребром 2 !Тренировочный вариант 292 от Ларина Задание 14
Дан прямоугольный треугольник ABC с прямым углом C. На катете AC взята точка M. Окружность с центром O и диаметром CM касается гипотенузы в точке N. а) Докажите, что прямые MN и BO параллельны. б) Найдите площадь четырёхугольника BOMN, если CN=4 и AM:MC=1:3
Дан прямоугольный треугольник ABC с прямым углом C. На катете AC взята точка M ! 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 30 Задание 16 # 36 вариантов ФИПИ Ященко 2019 ВАРИАНТ 10 Задание 16 # Аналог - Тренировочный вариант 329 от Ларина Задание 16 # Второй способ решения - см. Задачу-аналог   2596  
В трапеции ABCD с основаниями BC и AD углы ABD и ACD прямые. а) Докажите, что AB=CD. б) Найдите AD, если AB=2, а BC=7
Резервный день ЕГЭ математика профиль 25-06-2018 Задание 16 (прототип 16.4) вариант 751!Основная волна 1 июня Задача 16 (16.4) вариант 991# Два способа решения
Четырёхугольник ABCD вписан в окружность радиуса R=8. Известно, что AB=BC=CD=12. а) Докажите, что прямые BC и AD параллельны. б) Найдите AD
Четырёхугольник ABCD вписан в окружность радиуса R=8 ! варианты егэ 2018 математика профиль 1 июня Задание 16 (прототип 16.3) # Основная волна 1 июня Задача 16 (16.3)
Прямая, параллельная основаниям BC и AD трапеции ABCD, пересекает боковые стороны AB и CD в точках M и N. Диагонали AC и BD пересекаются в точке O. Прямая MN пересекает стороны OA и OD треугольника AOD в точках K и L соответственно. а) Докажите, что MK=ML. б) Найдите MN, если известно, что BC=10, AD=18 и MK:KL=1:2
Задача по геометрии на свойство параллельных прямых из экзамена ФМШ Для 7-8 класса ! Геометрическая задача 3 на экзамене в Физмат школу
Равные отрезки AB и СD пересекаются в точке O, которая является серединой каждого из них, AD=AO. а) Докажите, что BC параллельна AD. б) Найти угол AEC, если E -точка пересечения биссектрис углов BCO и DAO
Задача по геометрии на равенство треугольников из экзамена ФМШ Для 7-8 класса ! Геометрическая задача 2 на экзамене в Физмат школу
На окружности радиусом 20 с центром C взята точка P. в треугольнике ABC AB=25, AC=15, BC=20. Площадь треугольника APC равна площади треугольника BPC. Найти расстояние от точки P до прямой (AB) если оно меньше 25
На окружности радиусом 20 с центром C тренировочный ЕГЭ 2015 # (аналог   345  )
Загрузка...
Новое на сайте
11/6/2024 12:15:00 PM 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
10/24/2024 10:25:00 PM 30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
Решаем задачи из пособия 2025 года "Математика 30 вариантов ЕГЭ Базовый уровень ФИПИ школе Ященко"
10/24/2024 8:25:00 PM Математика 36 вариантов ОГЭ 2025 ФИПИ
Математика 36 вариантов ОГЭ 2025 ФИПИ
Решаем задания типовых экзаменационных вариантов пособия 36 вариантов ОГЭ 2025 ФИПИ школе под редакцией Ященко И В
К началу страницы