Теорема Фалеса

Показаны 20 из 100 задач

?
В это поле можно ввести текст для поиска по вхождению полной подстроки:
Например:
пирам - будут найдены все условия задач, содержащие слова "пирамида", "Пирамиду","пирамиды" и тд.
треугольной пирамиды - будут найдены все условия задач, содержащие точную подстроку "треугольной пирамиды"
log - будут найдены все условия задач с логарифмами.
Надо иметь ввиду, что фильтрация будет происходить по текущему разделу.
Если необходимо найти более сложные строки, например, содержащие одновременно слова "Объём" "треугольной" "середины" "рёбер" нужно воспользоваться расширенным режимом поиска - сменив опцию "Содерж" на % из списка. Символ подстановки % соответствует любому количеству любых символов. Далее вводим текст %Объём%треуг%серед%бер% и примененяем фильтр, нажав ENTER (или жёлтую кнопку "Применить фильтр по условиям")
В параллелограмме ABCD биссектриса угла BAD пересекает сторону BC в точке K, а продолжение стороны DC - в точке P; диагональ AC является биссектрисой угла KAD. а) Докажите, что PC^2 = CD * PK. б) Найдите AC : AP, если AB : BC = 3 : 8
Докажите, что PC^2 = CD * PK ! ФИПИ школе 2025 ЕГЭ Ященко 36 вариантов профильный уровень Вариант 6 Задание 17 # Задача-аналог   4570  
Основанием пирамиды SABCD является квадрат ABCD, ребро SA является высотой пирамиды. На рёбрах BC, СD и SC соответственно отмечены точки K, N и F так, что BK:KC = CN:ND = 3:1, CF:FS = 3:13. a) Докажите, что прямая AS параллельна плоскости FNK. б) Найдите объём пирамиды SFNK, если AB = AS = 8
Основанием пирамиды SABCD является квадрат ABCD, ребро SA является высотой пирамиды ! ФИПИ школе 2025 ЕГЭ Ященко 36 вариантов профильный уровень Вариант 6 Задание 14 # Задача-аналог   4585  
Основанием пирамиды SABCD является квадрат ABCD, ребро SA является высотой пирамиды. На рёбрах BC, СD и SC соответственно отмечены точки K, N и F так, что BK : KC = CN : ND = 1 : 2, CF : FS = 2 : 7. a) Докажите, что плоскость ABC перпендикулярна плоскости FNK. б) Найдите объём пирамиды AFNK, если AB = AS = 6
Найдите объём пирамиды AFNK, если AB = AS = 6 ! ФИПИ школе 2025 ЕГЭ Ященко 36 вариантов профильный уровень Вариант 5 Задание 14 # Задача-аналог   4586  
Окружность с центром в точке O вписана в ромб ABCD и касается его сторон AB, CD и AD соответственно в точках F, K и P. а) Докажите, что прямая FP параллельна диагонали ромба BD. б) Найдите длину диагонали BD, если известно, что FP=12 и PK=5
Окружность с центром в точке O вписана в ромб ABCD и касается его сторон AB, CD и AD соответственно в точках F, K и P ! ФИПИ школе 2025 ЕГЭ Ященко 36 вариантов профильный уровень Вариант 1 Задание 17
Биссектриса AM острого угла A равнобедренной трапеции ABCD делит боковую сторону CD (M ∊ CD) пополам. Отрезок DN перпендикулярен отрезку AM и делит сторону AB в отношении AN : NB = 5 : 1. а) Докажите, что прямые BM и DN параллельны. б) Найдите длину отрезка MN, если площадь трапеции ABCD равна 12sqrt2
Биссектриса AM острого угла A равнобедренной трапеции ABCD делит боковую сторону CD (M ∊ CD) пополам ! Тренировочный вариант 476 от Ларина Задание 17 # Задача-аналог   3793  
Основания трапеции равны 4 и 10. Найдите больший из отрезков, на которые делит среднюю линию этой трапеции одна из её диагоналей
Найдите больший из отрезков, на которые делит среднюю линию этой трапеции одна из её диагоналей ! Демонстрационный вариант ЕГЭ 2025, математика профильный уровень, Задание 1
В треугольнике ABC медиана AM и биссектриса BL пересекаются в точке K. Известно, что LM=3, LK : KB = 1 : 3. Найдите длину стороны AC
В треугольнике ABC медиана AM и биссектриса BL пересекаются в точке K. Известно, что LM=3 ! ДВИ МГУ-ППИ в Жэньчжэне 14-07-2024 Задание 8
В правильном тетраэдре ABCD точки М и N - середины ребер АВ и CD соответственно. Плоскость α параллельна прямым АВ и CD и пересекает прямую MN в точке К. а) Докажите, что плоскость α перпендикулярна прямой MN. б) Пусть плоскость α пересекает ребро AC в точке L. Найдите длину отрезка AL, если известно, что MК=1, КN=2
В правильном тетраэдре ABCD точки М и N - середины ребер АВ и CD соответственно. Плоскость α параллельна прямым АВ и CD и пересекает прямую MN в точке К ! ЕГЭ по математике 05.07.2024 (день пересдачи) профильный уровень Задание 14
В основании четырёхугольной пирамиды ABCDT лежит параллелограмм ABCD. Известно, что в пирамиду вписан шар с центром O радиуса 1, причём высота пирамиды TH проходит через точку O. Какой наименьший объём может иметь такая пирамида?
В основании четырёхугольной пирамиды ABCDT лежит параллелограмм ABCD. Известно, что в пирамиду вписан шар ! Пробный ДВИ МГУ 2024 ФКИ Задание 7
Правильные треугольники ABC и ABM лежат в перпендикулярных плоскостях, AB=10sqrt2. Точка P - середина AM, а точка T делит отрезок BM так, что BT:TM = 3:1. a) Докажите, что плоскость CPT делит высоту MD треугольника AMB в отношении 1 : 2, считая от точки M. б) Вычислите объём пирамиды MPTC
Правильные треугольники ABC и ABM лежат в перпендикулярных плоскостях ! ЕГЭ по математике 05.07.2024 (день пересдачи - недостоверно) профильный уровень Задание 14 # Два способа решения пункта а (с теоремой Менелая и без)
В правильной треугольной пирамиде SABC с основанием АВС точки М и K - середины ребер АВ и SC соответственно, а точки N и L отмечены на ребрах SA и BC соответственно так, что отрезки МК и NL пересекаются, а 2AN = 3NS. а) Докажите, что прямые MN, KL и SB пересекаются в одной точке. б) Найдите отношение BL:LC
В правильной треугольной пирамиде SABC с основанием АВС точки М и K - середины ребер АВ и SC соответственно, а точки N и L отмечены на ребрах SA и BC соответственно так, что отрезки МК и NL пересекаются, а 2AN = 3NS ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 14 # Два способа решения: с теоремой Менелая и без неё
Все рёбра правильной четырёхугольной пирамиды SABCD с основанием ABCD равны 4. Точка O - центр основания пирамиды. Плоскость, параллельная прямой SA и проходящая через точку O, пересекает рёбра SC и SD в точках M и N соответственно. Точка N делит ребро SD в отношении SN:ND=1:3. а) Докажите, что точка M - середина ребра SC. б) Найдите длину отрезка, по которому плоскость OMN пересекает грань SBC
Найдите длину отрезка, по которому плоскость OMN пересекает грань SBC ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 14
Медиана BM равнобедренного треугольника ABC (AB=AC) является диаметром окружности, которая второй раз пересекает основание BC в точке K. а) Докажите, что отрезок BK втрое больше отрезка CK. б) Пусть указанная окружность пересекает сторону AB в точке N. Найдите длину стороны AB, если BK=18 и BN=17
Медиана BM равнобедренного треугольника ABC является диаметром окружности, которая второй раз пересекает основание BC в точке K ! Досрочный ЕГЭ резервный день 18-04-2024 профильный уровень Задание 17
В прямоугольном параллелепипеде ABCDA1B1C1D1 известно, что AB=3, AD=4, AA1=6. Через точки B1 и D параллельно AC проведена плоскость, пересекающая ребро CC1 в точке L. а) Докажите, что L - середина CC1. б) Найдите расстояние от точки B до плоскости сечения
В прямоугольном параллелепипеде ABCDA1B1C1D1 известно, что AB=3, AD=4, AA1=6. Через точки B1 и D параллельно AC проведена плоскость ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 14
Основанием четырёхугольной пирамиды SABCD является квадрат ABCD, ребро SA перпендикулярно плоскости основания. Через середины рёбер BC и CD параллельно прямой SC проведена плоскость альфа. а) Докажите, что точка пересечения плоскости альфа с ребром AS делит это ребро в отношении 1:3, считая от вершины S. б) Найдите площадь сечения пирамиды SABCD плоскостью альфа, если AB=4, AS=3sqrt2
Основанием четырёхугольной пирамиды SABCD является квадрат ABCD, ребро SA перпендикулярно плоскости основания ! 36 вариантов ЕГЭ 2024 Ященко ФИПИ школе, Вариант 7 Задание 14
На рёбрах AB и B1C1 правильной треугольной призмы ABCA1B1C1 отметили соответственно точки T и K так, что AT:TB=2:1 и B1K=KC1. Через точки K и C параллельно прямой TB1 проведена плоскость α. а) Докажите, что точка пересечения плоскости α с ребром AB является серединой отрезка AT. б) Найдите площадь сечения призмы ABCA1B1C1 плоскостью α, если AB=42, а AA1=3sqrt7
На рёбрах AB и B1C1 правильной треугольной призмы ABCA1B1C1 отметили соответственно точки T и K так, что AT:TB=2:1 и B1K=KC1 ! 36 вариантов ЕГЭ 2024 Ященко ФИПИ школе, Вариант 5 Задание 14
Основание пирамиды SABC - прямоугольный треугольник АВС с прямым углом при вершине C. Ребро SA является высотой пирамиды. Точки E и F лежат на рёбрах AC и BS соответственно так, что SF : FB = AE : EC =1:5. а) Докажите, что сечение пирамиды плоскостью α, проходящей через точки E и F перпендикулярно прямой AC, является прямоугольником. б) Точки H и M - точки пересечения плоскости α с прямыми АВ и SC соответственно. Найдите объём многогранника BCMEHF, если объём пирамиды SABC равен 216
Основание пирамиды SABC - прямоугольный треугольник АВС с прямым углом при вершине C. Ребро SA является высотой пирамиды ! СтатГрад Тренировочная работа № 3 по математике 11 класс 14-02-2024 Задание 13
Основание пирамиды DABC - прямоугольный треугольник АВС с прямым углом при вершине С. Высота пирамиды проходит через точку В. Точки М и N — середины рёбер АD и BC соответственно. а) Докажите, что MN является биссектрисой угла ВМС. б) Найдите угол между прямыми BD и MN, если BD=4sqrt2, AC=12
Основание пирамиды DABC - прямоугольный треугольник АВС с прямым углом при вершине С. Высота пирамиды проходит через точку В ! Тренировочная работа №1 по математике 10 класс Статград 31-01-2024 Вариант МА2300109 Задание 14 #Задача-аналог   2684  
Площадь треугольника ABC равна 80, DE - средняя линия параллельная стороне AB. Найдите площадь трапеции ABED
Площадь треугольника ABC равна 80, DE - средняя линия параллельная стороне AB ! 50 вариантов заданий 2024 Ященко, Вариант 26 Задание 1
В правильной треугольной пирамиде SABC сторона основания AB равна 10, а боковое ребро SA равно 7. На рёбрах AB и SC отмечены точки L и N соответственно, причём AL : LB = SN : NC =1 : 4. Плоскость α содержит прямую LN и параллельна прямой BC. а) Докажите, что плоскость α параллельна прямой SA. б) Найдите угол между плоскостями α и SBC
Докажите, что плоскость альфа параллельна прямой SA ! В правильной треугольной пирамиде SABC сторона основания AB равна 10, а боковое ребро SA равно 7 # Тренировочная работа №2 по математике 11 класс 13.12.2023 Вариант МА2310209 Задание 14
Загрузка...
Новое на сайте
11/6/2024 12:15:00 PM 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
10/24/2024 10:25:00 PM 30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
Решаем задачи из пособия 2025 года "Математика 30 вариантов ЕГЭ Базовый уровень ФИПИ школе Ященко"
К началу страницы