Вариант 33 ( из 36 вариантов заданий ЕГЭ 2022 ФИПИ Ященко)

Показаны 10 из 10 задач

?
В это поле можно ввести текст для поиска по вхождению полной подстроки:
Например:
пирам - будут найдены все условия задач, содержащие слова "пирамида", "Пирамиду","пирамиды" и тд.
треугольной пирамиды - будут найдены все условия задач, содержащие точную подстроку "треугольной пирамиды"
log - будут найдены все условия задач с логарифмами.
Надо иметь ввиду, что фильтрация будет происходить по текущему разделу.
Если необходимо найти более сложные строки, например, содержащие одновременно слова "Объём" "треугольной" "середины" "рёбер" нужно воспользоваться расширенным режимом поиска - сменив опцию "Содерж" на % из списка. Символ подстановки % соответствует любому количеству любых символов. Далее вводим текст %Объём%треуг%серед%бер% и примененяем фильтр, нажав ENTER (или жёлтую кнопку "Применить фильтр по условиям")
На рисунке изображён график функций f(x)=(kx+a)/(x+b). Найдите k
На рисунке изображён график функций f(x)= kx+a / (x+b). Найдите k ! 36 вариантов ФИПИ Ященко 2022 Вариант 33 Задание 9
Найдите объём многогранника, вершинами которого являются вершины A, B, C, D, B1 прямоугольного параллелепипеда ABCDA1B1C1D1, у которого AB=9, BC=3, BB1=8
Найдите объём многогранника, вершинами которого являются вершины A, B, C, D, B1 ! 36 вариантов ФИПИ Ященко 2022 Вариант 33 Задание 5 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 23 Задание 8
Два велосипедиста одновременно отправились в 140 - километровый пробег. Первый ехал со скоростью на 4 км/ч большей, чем скорость второго, и прибыл к финишу на 4 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу первым. Ответ дайте в км/ч
Два велосипедиста одновременно отправились в 140 - километровый пробег ! 36 вариантов ФИПИ Ященко 2022 Вариант 33 Задание 8 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 23 Задание 11 # Задача-аналог   2507  
Найдите наибольшее значение функции y=ln(8x)-8x+7 на отрезке [1/16; 5/16].
Найдите наибольшее значение функции y= ln(8x) - 8x + 7 ! 36 вариантов ФИПИ Ященко 2022 Вариант 33 Задание 11 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 23 Задание 12
а) Решите уравнение ((0.04)^sin(x))^cos(x)=5^(-sqrt(3)sin(x)) б) Найдите все корни этого уравнения, принадлежащие промежутку[(5pi)/2; 4pi].
а) Решите уравнение 0,04 sin x cos x = 5 - корень из 3 sin x! 36 вариантов ФИПИ Ященко 2022 Вариант 33 Задание 12 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 23 Задание 13
Дан куб ABCDA1B1C1D1. а) Постройте сечение куба плоскостью, проходящей через точки B, A1 и D1. б) Найдите угол между плоскостями BA1C1 и BA1D1
Дан куб ABCDA1B1C1D1. а) Постройте сечение куба плоскостью ! 36 вариантов ФИПИ Ященко 2022 Вариант 33 Задание 13 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 23 Задание 14
15 июня планируется взять кредит в банке на сумму 1300 тысяч рублей на 16 месяцев. Условия его возврата таковы: - 11-го числа каждого месяца долг возрастает на r% по сравнению с концом предыдущего месяца; - со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; - 15-го числа каждого месяца с 1-го по 15-й долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца; -15-числа 15-го месяца долг составит 100 тысяч рублей; -к 15-му числу 16-го месяца кредит должен быть полностью погашен. Найдите r, если известно, что общая сумма выплат после полного погашения кредита составит 1636 тысяч рублей
15 июня планируется взять кредит в банке на сумму 1300 тысяч рублей на 16 месяцев ! 36 вариантов ФИПИ Ященко 2022 Вариант 33 Задание 15 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 23 Задание 17
Решите неравенство log_{2}(x^2-2)-log_{2}(x)<=log_{2}(x-2/x^2)
Решите неравенство log 2 (x 2 -2) - log 2 x <= log 2 (x-2 /x 2) ! 36 вариантов ФИПИ Ященко 2022 Вариант 33 Задание 14 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 23 Задание 15 # 36 вариантов ФИПИ Ященко 2019 ВАРИАНТ 3 Задание 15
Окружность с центром в точке O пересекает каждую из сторон трапеции ABCD в двух точках. Четыре получившиеся хорды окружности равны. а) Докажите, что биссектрисы всех углов трапеции пересекаются в одной точке. б) Найдите высоту трапеции, если окружность пересекает боковую сторону AB в точках K и L так, что AK=19, KL=12, LB=3
Окружность с центром в точке O пересекает каждую из сторон трапеции ABCD в двух точках. Четыре получившиеся хорды окружности равны ! 36 вариантов ФИПИ Ященко 2022 Вариант 33 Задание 16 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 23 Задание 16 # 36 вариантов ФИПИ Ященко 2019 ВАРИАНТ 3 Задание 16 # Задача - Аналог   1518  
Найти все значения параметра а, при каждом из которых система уравнений {((a+1)*(x^2+y^2)+(a-1)*x+(a+1)*y+2=0), (xy-1=x-y) :} имеет ровно четыре различных решения
Найти все значения параметра а, при каждом из которых система уравнений {((a+1)*(x^2+y^2)+(a-1)*x+(a+1)*y+2=0), (xy-1=x-y) :} имеет ровно четыре различных решения ! 36 вариантов ФИПИ Ященко 2022 Вариант 33 Задание 17 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 23 Задание 18 ! 36 вариантов ФИПИ Ященко 2019 ВАРИАНТ 3 Задание 18 # В решении системы с параметром используется Уравнение окружности
Загрузка...
Новое на сайте
11/6/2024 12:15:00 PM 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
10/24/2024 10:25:00 PM 30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
Решаем задачи из пособия 2025 года "Математика 30 вариантов ЕГЭ Базовый уровень ФИПИ школе Ященко"
10/24/2024 8:25:00 PM Математика 36 вариантов ОГЭ 2025 ФИПИ
Математика 36 вариантов ОГЭ 2025 ФИПИ
Решаем задания типовых экзаменационных вариантов пособия 36 вариантов ОГЭ 2025 ФИПИ школе под редакцией Ященко И В
К началу страницы