Свойство параллельных плоскостей

Показаны 20 из 39 задач

?
В это поле можно ввести текст для поиска по вхождению полной подстроки:
Например:
пирам - будут найдены все условия задач, содержащие слова "пирамида", "Пирамиду","пирамиды" и тд.
треугольной пирамиды - будут найдены все условия задач, содержащие точную подстроку "треугольной пирамиды"
log - будут найдены все условия задач с логарифмами.
Надо иметь ввиду, что фильтрация будет происходить по текущему разделу.
Если необходимо найти более сложные строки, например, содержащие одновременно слова "Объём" "треугольной" "середины" "рёбер" нужно воспользоваться расширенным режимом поиска - сменив опцию "Содерж" на % из списка. Символ подстановки % соответствует любому количеству любых символов. Далее вводим текст %Объём%треуг%серед%бер% и примененяем фильтр, нажав ENTER (или жёлтую кнопку "Применить фильтр по условиям")
В прямоугольном параллелепипеде ABCDA1B1C1D1 на рёбрах AB, A1B1 и B1C1 отмечены точки K, L и M соответственно так, что KLMC - равнобедренная трапеция с основаниями 4 и 8. а) Докажите, что точка M - середина B1C1. б) Найдите угол между плоскостями KLM и ABC, если площадь трапеции KLMC равна 12sqrt2
В прямоугольном параллелепипеде ABCDA1B1C1D1 на рёбрах AB, A1B1 и B1C1 отмечены точки K, L и M соответственно ! ЕГЭ по математике 05.07.2024 (день пересдачи) профильный уровень Задание 14
В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 стороны основания равны 4, а боковые рёбра - 5. а) Докажите, что плоскость A1C1E перпендикулярна плоскости BB1E1. б) Найдите угол между плоскостями A1C1E и ABC
В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 стороны основания равны 4, а боковые рёбра - 5 ! Тренировочная работа №2 по математике 10 класс Статград 16-05-2024 Вариант МА2300309 Задание 14
Диагонали BE и DF основания ABCDEF правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1 пересекаются в точке P, а диагонали FE1 и EF1 боковой грани EFF1E1 пересекаются в точке Q. а) Докажите, что прямая QP параллельна плоскости CB1E1. б) Найдите расстояние между прямой QP и плоскостью CB1E1, если сторона основания призмы ABCDEFA1B1C1D1E1F1 равна 2sqrt3, а её высота равна 4
Диагонали BE и DF основания ABCDEF правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1 пересекаются в точке P ! СтатГрад Тренировочная работа № 5 по математике 11 класс 24-04-2024 Вариант МА2310509 Задание 14
На рёбрах AB и A1C1 правильной треугольной призмы ABCA1B1C1 отметили соответственно точки T и K так, что AT:TB=1:2 и A1K=KC1. Через точки K и C параллельно прямой TA1 проведена плоскость α. а) Докажите, что точка пересечения плоскости α с ребром AB делит это ребро в отношении 2:1, считая от точки A. б) Найдите площадь сечения призмы ABCA1B1C1 плоскостью α, если AB=6sqrt7, а A1A=3
Докажите, что точка пересечения плоскости α с ребром AB делит это ребро в отношении 2:1, считая от точки A ! 36 вариантов ЕГЭ 2024 Ященко ФИПИ школе, Вариант 6 Задание 14
На рёбрах AB и B1C1 правильной треугольной призмы ABCA1B1C1 отметили соответственно точки T и K так, что AT:TB=2:1 и B1K=KC1. Через точки K и C параллельно прямой TB1 проведена плоскость α. а) Докажите, что точка пересечения плоскости α с ребром AB является серединой отрезка AT. б) Найдите площадь сечения призмы ABCA1B1C1 плоскостью α, если AB=42, а AA1=3sqrt7
На рёбрах AB и B1C1 правильной треугольной призмы ABCA1B1C1 отметили соответственно точки T и K так, что AT:TB=2:1 и B1K=KC1 ! 36 вариантов ЕГЭ 2024 Ященко ФИПИ школе, Вариант 5 Задание 14
Точка M - середина ребра BC параллелепипеда ABCDA1B1C1D1. а) Докажите, что плоскость AMB1 параллельна прямой A1C. б) Найдите расстояние между прямой A1C и плоскостью AMB1, если параллелепипед прямоугольный, AB=12, AD=12 и AA1=6
Точка M - середина ребра BC параллелепипеда ABCDA1B1C1D1. а) Докажите, что плоскость AMB1 параллельна прямой A1C ! Тренировочная работа №2 по математике 10 класс Статград 11-05-2023 Вариант МА2200309 Задание 13
Основание прямой призмы ABCDA1B1C1D - параллелограмм АВСD, диагонали которого пересекаются в точке О. Известно, что АА1 : АВ : АD = 1 : 2 : √5. На ребре АА1 отметили такую точку М, что прямые ОМ и BD1 перпендикулярны. а) Докажите, что точка М - середина ребра АА1. б) Найдите расстояние от точки М до прямой B1D1, если АВ=2 , BD=3
Основание прямой призмы ABCDA1B1C1D - параллелограмм АВСD, диагонали которого пересекаются в точке О ! Тренировочная работа №1 по математике 10 класс Статград 08-02-2023 Вариант МА2200109 Задание 13
В правильной треугольной призме ABCA1B1C1 точка M - середина ребра CC1, точки K и N отмечены на рёбрах AB и A1B1 соответственно, так что AK : KB = B1N : NA1. а) Докажите, что плоскость MKN перпендикулярна плоскости AA1B1. б) Найдите площадь сечения плоскостью MKN, если AB=BB1=42, AK:KB = 1:41
В правильной треугольной призме ABCA1B1C1 точка M - середина ребра CC1, точки K и N отмечены на рёбрах AB и A1B1 соответственно ! ЕГЭ 2022 по математике 27.06.2022 резервный день Задание 13
На ребре AA1 прямоугольного параллелепипеда ABCDA1B1C1D1 взята точка E так, что A1E =6EA. Точка T — середина ребра B1C1. Известно, что AB = 4sqrt2, AD=12, AA1=14. а) Докажите, что плоскость ETD1 делит ребро BB1 в отношении 4 : 3, считая от точки B. б) Найдите площадь сечения параллелепипеда плоскостью ETD1
На ребре AA1 прямоугольного параллелепипеда ABCDA1B1C1D1 взята точка E так, что A1E =6EA ! Статград 18.05.2022 Вариант МА2100309 Задание 13 # Задача-Аналог   2988  
В правильной четырёхугольной пирамиде SABCD все рёбра равны 1. Точка F - середина ребра SB, точка G - середина ребра SC. а) Постройте прямую пересечения плоскостей ABG и GDF. б) Найдите угол между плоскостями ABG и GBF
а) Постройте прямую пересечения плоскостей ABG и GDF ! 36 вариантов ФИПИ Ященко 2022 Вариант 36 Задание 13
На ребре AA1 прямоугольного параллелепипеда ABCDA1B1C1D1 взята точка E так, что A1E : EA = 3 : 1, а на ребре BB1 - точка F так, что B1F : FB = 3 : 5. Известно, что AB=4, AD=6, AA1=8. а) Докажите, что плоскость EFD1 делит ребро B1C1 на два равных отрезка. б) Найдите угол между плоскостью EFD1 и плоскостью AA1B1
На ребре AA1 прямоугольного параллелепипеда ABCDA1B1C1D1 взята точка E так, что A1E : EA = 3 : 1 ! математика 50 вариантов ЕГЭ 2022 профильный уровень Ященко Вариант 15 Задание 13
В правильной треугольной призме ABCA1B1C1 стороны основания равны 16, боковые рёбра равны 6. а) Докажите, что сечение, проходящее через вершины A, B и середину ребра A1C1, является равнобедренной трапецией. б) Найдите площадь данного сечения
В правильной треугольной призме ABCA1B1C1 стороны основания равны 16, боковые рёбра равны 6 ! математика 50 вариантов ЕГЭ 2022 профильный уровень Ященко Вариант 14 Задание 13 # Приведенорешениепрототипаcolor{blue} text{Приведено решение прототипа 3178}задачи- аналога   3178  
В правильной треугольной призме ABCA1B1C1 стороны основания равны 12, боковые рёбра равны 8. а) Докажите, что сечение, проходящее через вершины A, B и середину ребра A1C1, является равнобедренной трапецией. б) Найдите площадь данного сечения
В правильной треугольной призме ABCA1B1C1 стороны основания равны 12, боковые рёбра равны 8 ! математика 50 вариантов ЕГЭ 2022 профильный уровень Ященко Вариант 13 Задание 13 # Приведенорешениепрототипаcolor{blue} text{Приведено решение прототипа 3178}задачи- аналога   3178  
В правильной треугольной призме ABCA1B1C1 стороны основания равны 10, боковые рёбра равны 12. а) Докажите, что сечение, проходящее через вершины A, B и середину ребра A1C1, является равнобедренной трапецией. б) Найдите площадь данного сечения
В правильной треугольной призме ABCA1B1C1 стороны основания равны 10, боковые рёбра равны 12 ! математика 50 вариантов ЕГЭ 2022 профильный уровень Ященко Вариант 12 Задание 13
В правильной треугольной призме ABCA1B1C1 на рёбрах AC и BC отмечены соответственно точки M и N так, что AM:MC=CN:BN=2:1, точка K - середина ребра A1C1. а) Докажите, что плоскость MNK проходит через вершину B1. б) Найдите расстояние от точки C до плоскости KMN, если AB=6, AA1=2,4
Найдите расстояние от точки C до плоскости KMN, если AB=6, AA1=2,4 ! 36 вариантов ФИПИ Ященко 2022 Вариант 4 Задание 13 # Задача-аналог   3104  
В правильной треугольной призме ABCA1B1C1 на рёбрах AC и BC отмечены соответственно точки M и N так, что AM:MC=CN:BN=2:1. а) Докажите, что плоскость MNB1 проходит через середину ребра A1C1. б) Найдите площадь сечения призмы ABCA1B1C1 плоскостью MNB1, если AB=6, AA1=sqrt3
В правильной треугольной призме ABCA1B1C1 на рёбрах AC и BC отмечены соответственно точки M и N так, что AM:MC=CN:BN=2:1 ! 36 вариантов ФИПИ Ященко 2022 Вариант 3 Задание 13 # Задача-аналог   3112  
В правильной четырёхугольной пирамиде SABCD сторона основания AD равна 10, высота SH равна 12. Точка K - середина бокового ребра SD. Плоскость AKB пересекает боковое ребро SC в точке P. а) Докажите, что площадь четырёхугольника CDKP равна составляет 3/4 площади треугольника SCD. б) Найдите объем пирамиды ACDKP
В правильной четырёхугольной пирамиде SABCD сторона основания AD равна 10, высота SH равна 12 ! 36 вариантов ФИПИ Ященко 2022 Вариант 2 Задание 13 #ЕГЭ по математике профильного уровня 07-06-2021 основная волна Задание 14 # Задача-аналог   2866  
В правильной треугольной пирамиде SABC сторонa основания AB равна 16, высота SH равна 10. Точка K - середина бокового ребра SA. Плоскость, параллельная плоскости ABC, проходит через точку K и пересекает рёбра SB и SC в точках Q и P соответственно. а) Докажите, что площадь четырёхугольника BCPQ составляет 3/4 площади треугольника SBC. б) Найдите объём пирамиды KBCPQ
В правильной треугольной пирамиде SABC сторонa основания AB равна 16, высота SH равна 10 ! 36 вариантов ФИПИ Ященко 2022 Вариант 1 Задание 13
В кубе ABCDA1B1C1D1 точки K, L и M - середины рёбер AB, B1C1 и DD1. А) Докажите, что сечение куба плоскостью KLM является правильным многоугольником. Б) Найдите расстояние от точки A до плоскости KLM, если ребро куба равно 2
В кубе ABCDA1B1C1D1 точки K, L и M - середины рёбер AB, B1C1 и DD1 ! Тренировочный вариант 365 от Ларина Задание 13 (14) # Решение - Елены Ильиничны Хажинской
В правильной четырехугольной призме АВСDА1B1C1D1 стороны основания равны 4, боковые ребра равны 6. Точка М – середина ребра СC1, на ребре BB1 отмечена точка N, такая, что BN : NB1 = 1 : 2. а) Докажите, что плоскость AMN делит ребро DD1 в отношении 1 : 5, считая от точки D. б) Найдите угол между плоскостями АВС и AMN
В правильной четырехугольной призме АВСDА1B1C1D1 стороны основания равны 4, боковые ребра равны 6 ! Тренировочный вариант 364 от Ларина Задание 13 (14)
Загрузка...
Новое на сайте
11/6/2024 12:15:00 PM 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
10/24/2024 10:25:00 PM 30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
Решаем задачи из пособия 2025 года "Математика 30 вариантов ЕГЭ Базовый уровень ФИПИ школе Ященко"
10/24/2024 8:25:00 PM Математика 36 вариантов ОГЭ 2025 ФИПИ
Математика 36 вариантов ОГЭ 2025 ФИПИ
Решаем задания типовых экзаменационных вариантов пособия 36 вариантов ОГЭ 2025 ФИПИ школе под редакцией Ященко И В
К началу страницы