328 тренировочный вариант от Ларина

Показаны 9 из 9 задач

?
В это поле можно ввести текст для поиска по вхождению полной подстроки:
Например:
пирам - будут найдены все условия задач, содержащие слова "пирамида", "Пирамиду","пирамиды" и тд.
треугольной пирамиды - будут найдены все условия задач, содержащие точную подстроку "треугольной пирамиды"
log - будут найдены все условия задач с логарифмами.
Надо иметь ввиду, что фильтрация будет происходить по текущему разделу.
Если необходимо найти более сложные строки, например, содержащие одновременно слова "Объём" "треугольной" "середины" "рёбер" нужно воспользоваться расширенным режимом поиска - сменив опцию "Содерж" на % из списка. Символ подстановки % соответствует любому количеству любых символов. Далее вводим текст %Объём%треуг%серед%бер% и примененяем фильтр, нажав ENTER (или жёлтую кнопку "Применить фильтр по условиям")
В основании четырехугольной пирамиды SАВСD лежит параллелограмм АВСD c центром О. Точка N – середина ребра SC, точка L – середина ребра SA. а) Докажите, что плоскость BNL делит ребро SD в отношении 1 : 2, считая от вершины S. б) Найдите угол между плоскостями BNL и АВС, если пирамида правильная, SA = 8, а тангенс угла между боковым ребром и плоскостью основания пирамиды равен sqrt7/5
В основании четырехугольной пирамиды SАВСD лежит параллелограмм АВСD c центром О ! Тренировочный вариант 328 от Ларина Задание 14 # Решение - Елены Ильиничны Хажинской
В окружность, радиус которой равен 2sqrt7, вписана трапеция ABCD, причем ее основание AD – диаметр окружности, а /_BAD = 60^@. Хорда СЕ пересекает диаметр AD в точке Р такой, что AP : PD = 1 : 3. а) Докажите, что Р – cередина отрезка АО. б) Найдите площадь треугольника BPE
В окружность, радиус которой равен 2 корня из 7, вписана трапеция ABCD ! Тренировочный вариант 328 от Ларина Задание 16 # Решение - Елены Ильиничны Хажинской
Решите неравенство log_{abs(x)}(3/(6x^2-11abs(x)+4)) < -1
Тренировочный вариант 328 от Ларина Задание 15
Найдите все значения параметра a, при которых неравенство abs(cos^2(x)+0.5sin(2x)+(1-a)sin^2(x)) <= 1.5 выполняется для любого действительного числа x
Тренировочный вариант 328 от Ларина Задание 18
В равнобедренную трапецию вписана окружность. Известно, что боковая сторона трапеции точкой касания делится на отрезки длиной 4 и 1. Найдите площадь трапеции
Известно, что боковая сторона трапеции точкой касания делится на отрезки ! Тренировочный вариант 328 от Ларина Задание 6
Найдите угловой коэффициент касательной к графику функции f(x)=2e^(5x-2)+5x^3 в точке с абсциссой x_0=0.4.
Найдите угловой коэффициент касательной к графику функции f(x)= 2e^(5x -2)+ 5x^3 ! Тренировочный вариант 328 от Ларина Задание 7
Найдите значение выражения log_{5}(7x^4)-log_{25}(49x^2), если log_{1/5}(x)=1.
Тренировочный вариант 328 от Ларина Задание 9
Найдите наибольшее значение функции f(x)=cos^2(x)+sin(x) на отрезке [0; pi/4].
Найдите наибольшее значение функции f(x)= cos квадрат x +sin x ! Тренировочный вариант 328 от Ларина Задание 12
а) Решите уравнение 3^(2x+1)-4*3^x+4 =(sqrt(-x^2-x/2+1/2))^2+x^2+x/2+5/2. б) Укажите корни этого уравнения, принадлежащие отрезку [log_{2}(1/6); log_{2}(2/3)].
Решите уравнение 3^(2x+1) - 4*3^x+4 ! Тренировочный вариант 328 от Ларина Задание 13 ЕГЭ
Загрузка...
Новое на сайте
11/6/2024 12:15:00 PM 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
10/24/2024 10:25:00 PM 30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
Решаем задачи из пособия 2025 года "Математика 30 вариантов ЕГЭ Базовый уровень ФИПИ школе Ященко"
10/24/2024 8:25:00 PM Математика 36 вариантов ОГЭ 2025 ФИПИ
Математика 36 вариантов ОГЭ 2025 ФИПИ
Решаем задания типовых экзаменационных вариантов пособия 36 вариантов ОГЭ 2025 ФИПИ школе под редакцией Ященко И В
К началу страницы