27 августа 2023 г. 20:24:21
Новое задание на векторы первой части ЕГЭ 2024 года по математике профильног уровня. 🔥 Демонстрационный вариант контрольных измерительных материалов …
1 июля 2023 г. 20:23:47
Решения заданий вариантов профильного ЕГЭ по математике 1 июля 2023 года Резервного дня в Москве
26 июня 2023 г. 20:23:47
Решения заданий вариантов профильного ЕГЭ по математике 26 июня 2023 года Резервного дня

ЕГЭ по математике 2022 cтраница 1


Skip Navigation Links > Математика > ЕГЭ по математике 2022

Применить фильтр по условиям
К первой страницеК предыдущей страницеСтраница 1 из 64 (Кол-во задач:635)[1]23464К следующей страницеК последней странице
Очистить все фильтры
ID 
Условие задачи 
Примечание 
Open filter row popup menu
Open filter row popup menu
Open filter row popup menu
 
3577В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами AB=5 и BC=sqrt23. Длины боковых рёбер пирамиды SA = 2sqrt15, SB=sqrt85, SD=sqrt83. а) Докажите, что SA - высота пирамиды SABCD. б) Найдите угол между прямыми SC и BD
Решение
В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами AB=5 и BC=sqrt23 ! Тренировочная работа по математике №2 СтатГрад 11 класс 13.12.2022 Задание 13 Вариант МА2210209 #Задача-аналог   2525  ...X
3544Найдите все значения a, при которых система уравнений {(abs(y+x^3)-abs(y+3x)=2y+x^3+3x), (abs(-y-3x+1)-abs(y+x^3-a)=), (= -3y-6x-x^3+a+2) :} имеет единственное решение
Решение
Найдите все значения a, при которых система уравнений {|y+x^3|-|y+3x| = 2y+x^3+3x), |-y-3x+1| -|y+x^3-a| =-3y-6x-x3+a+2 имеет единственное решение ! математика 50 вариантов ЕГЭ 2022 профильный уровень Ященко Вариант 6 Задание 17 # Задача-Аналог   3405  ...X
3490Дана равнобедренная трапеция ABCD. На боковой стороне AB и большем основании AD взяты соответственно точки F и E так, что FE параллельно CD, a FC=ED. а) Докажите, что угол BCF равен углу AFE. б) Найдите площадь трапеции ABCD, если DE=5BF, FE=8 и площадь трапеции FCDE равна 27sqrt11
Решение
Дана равнобедренная трапеция ABCD. На боковой стороне AB и большем основании AD взяты соответственно точки F и E так, что FE параллельно CD, a FC=ED ! Досрочный ЕГЭ 2022 по математике 28.03.2022 Задание 16...X
3479В основании пирамиды SABCD лежит трапеция ABCD, с большим основанием AD. Диагонали трапеции пересекаются в точке O. Точки M и N - середины боковых сторон AB и CD соответственно. Плоскость α проходит через точки M и N параллельно прямой SO. а) Докажите, что сечение пирамиды SABCD плоскостью α является трапецией. б) Найдите площадь сечения пирамиды SABCD плоскостью α, если AD=9, BC=7, SO=6, а прямая SO перпендикулярна прямой AD
Решение
В основании пирамиды SABCD лежит трапеция ABCD, с большим основанием AD ! 36 вариантов ФИПИ Ященко 2023 Вариант 1 Задание 13 # ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 13 Санкт-Петербург, Центр # Задачи-Аналоги   3357    3361  ...X
3477В параллелограмме ABCD угол ВАС вдвое больше угла CAD. Биссектриса угла BAC пересекает отрезок BC в точке L. На продолжении стороны CD за точку D выбрана такая точка E, что AE=CE. а) Докажите, что AL:BC=AB:BC. б) Найдите EL, если AC=21, tg /_BCA=0,4
Решение
В параллелограмме ABCD угол ВАС вдвое раза больше угла CAD ! 36 вариантов ФИПИ Ященко 2023 Вариант 1 Задание 16 # ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 16 Санкт-Петербург, Центр # Задача-Аналог   3356  ...X
3405Найдите все значения a, при которых система уравнений {(abs(y+1/2x^3)-abs(y+3/2x)=2y+1/2x^3+3/2x), (abs(-y-3/2x+1)-abs(y+1/2x^3-a)=), (-4 y-9/2x-1/2x^3+a+3) :}. имеет единственное решение
Решение     График
Найдите все значения a, при которых система уравнений { |y+1/2x3| -|y+3/2x| = 2y + 1/2x3 +3/2x |-y-3/2x+1| - |y+1/2x3 -a| = -4y -9/2x -1/2x3 +a +3 имеет единственное решение ! математика 50 вариантов ЕГЭ 2022 профильный уровень Ященко Вариант 8 Задание 17 # Ошибка в ответе пособия у Ященко ? : color{red}{a > -1 ?} # # Задача-Аналог   3544  ...X
3398В правильной треугольной призме ABCA1B1C1 точка M - середина ребра CC1, точки K и N отмечены на рёбрах AB и A1B1 соответственно, так что AK : KB = B1N : NA1. а) Докажите, что плоскость MKN перпендикулярна плоскости AA1B1. б) Найдите площадь сечения плоскостью MKN, если AB=BB1=42, AK:KB = 1:41
Решение
В правильной треугольной призме ABCA1B1C1 точка M - середина ребра CC1, точки K и N отмечены на рёбрах AB и A1B1 соответственно ! ЕГЭ 2022 по математике 27.06.2022 резервный день Задание 13...X
3396Две окружности пересекаются в точках A и B. Общая касательная к этим окружностям касается в точках C и D. Прямая AB пересекает отрезок CD в точке M. Центры окружностей лежат в разных полуплоскостях относительно прямой AB, точка B лежит между точками A и M. а) Докажите, что CM=MD. б) Найдите расстояние между центрами данных окружностей, если их радиусы равны 1 и 3 соответственно, а точка B является серединой отрезка AM
Решение
Две окружности пересекаются в точках A и B. Общая касательная к этим окружностям касается в точках C и D ! ЕГЭ 2022 по математике 27.06.2022 резервный день Задание 16...X
3395Точка D лежит на основании AC равнобедренного треугольника ABC. точки I и J  - центры окружностей, описанных около треугольников ABD и CBD соответственно. а) Докажите, что прямые BI и DJ параллельны. б) Найдите IJ, если AC=12, cos/_BDC=2/7
Решение
Точка D лежит на основании AC равнобедренного треугольника ABC. точки I и J  - центры окружностей ! ЕГЭ 2022 по математике 27.06.2022 резервный день Задание 16...X
3394Точка M - середина ребра AA1 треугольной призмы ABCA1B1C1, в основании которой треугольник ABC. Плоскость альфа проходит через точки B и B1 перпендикулярно прямой C1M. а) Докажите, что одна из диагоналей грани ACC1A1 равна одному из рёбер этой грани. б) Найдите расстояние от точки C до плоскости альфа, если плоскость альфа делит ребро AC в отношении 1:5, считая от вершины A, AC=20, AA1=32
Решение
Точка M - середина ребра AA1 треугольной призмы ABCA1B1C1, в основании которой треугольник ABC ! ЕГЭ 2022 по математике 27.06.2022 резервный день Задание 13...X
К следующей страницеПоказать ещё...
Показана страница 1 из 64
Show filter builder dialog Clear