Задачи 17 на планиметрию

Показаны 20 из 375 задач

?
В это поле можно ввести текст для поиска по вхождению полной подстроки:
Например:
пирам - будут найдены все условия задач, содержащие слова "пирамида", "Пирамиду","пирамиды" и тд.
треугольной пирамиды - будут найдены все условия задач, содержащие точную подстроку "треугольной пирамиды"
log - будут найдены все условия задач с логарифмами.
Надо иметь ввиду, что фильтрация будет происходить по текущему разделу.
Если необходимо найти более сложные строки, например, содержащие одновременно слова "Объём" "треугольной" "середины" "рёбер" нужно воспользоваться расширенным режимом поиска - сменив опцию "Содерж" на % из списка. Символ подстановки % соответствует любому количеству любых символов. Далее вводим текст %Объём%треуг%серед%бер% и примененяем фильтр, нажав ENTER (или жёлтую кнопку "Применить фильтр по условиям")
В параллелограмме ABCD биссектриса угла BAD пересекает сторону BC в точке K, а продолжение стороны DC - в точке P; диагональ AC является биссектрисой угла KAD. а) Докажите, что PC^2 = CD * PK. б) Найдите AC : AP, если BC : AB = 2,5
В параллелограмме ABCD биссектриса угла BAD пересекает сторону BC в точке K, а продолжение стороны DC - в точке P ! ФИПИ школе 2025 ЕГЭ Ященко 36 вариантов профильный уровень Вариант 5 Задание 17
В параллелограмме ABCD с острым углом BAD точка E - середина стороны BC. Через точку B перпендикулярно прямой AB и через точку E перпендикулярно прямой DE проведены соответственно две прямые, которые пересекаются в точке K. а) Докажите, что AK = KD. б) Найдите угол ADE, если расстояние от точки K до прямой AD равно длине отрезка EC и ∠ADC = 110°
Найдите угол ADE, если расстояние от точки K до прямой AD равно длине отрезка EC и ∠ADC = 110° ! ФИПИ школе 2025 ЕГЭ Ященко 36 вариантов профильный уровень Вариант 4 Задание 17 # Задача-аналог   4543  
В параллелограмме ABCD с острым углом BAD точка E - середина стороны BC. Через точку B перпендикулярно прямой AB и через точку E перпендикулярно прямой DE проведены соответственно две прямые, которые пересекаются в точке K. а) Докажите, что AK = KD. б) Найдите угол BAD, если расстояние от точки K до прямой AD равно длине отрезка EC и ∠CED = 58°
В параллелограмме ABCD с острым углом BAD точка E - середина стороны BC. Через точку B перпендикулярно прямой AB ! ФИПИ школе 2025 ЕГЭ Ященко 36 вариантов профильный уровень Вариант 3 Задание 17 # Задача-аналог   4556  
Окружность с центром в точке O вписана в ромб ABCD и касается его сторон AB, CD и AD соответственно в точках F, K и P. а) Докажите, что прямая FP параллельна диагонали ромба BD. б) Найдите длину диагонали BD, если известно, что FP=12 и PK=5
Окружность с центром в точке O вписана в ромб ABCD и касается его сторон AB, CD и AD соответственно в точках F, K и P ! ФИПИ школе 2025 ЕГЭ Ященко 36 вариантов профильный уровень Вариант 1 Задание 17
Биссектриса AM острого угла A равнобедренной трапеции ABCD делит боковую сторону CD (M ∊ CD) пополам. Отрезок DN перпендикулярен отрезку AM и делит сторону AB в отношении AN : NB = 5 : 1. а) Докажите, что прямые BM и DN параллельны. б) Найдите длину отрезка MN, если площадь трапеции ABCD равна 12sqrt2
Биссектриса AM острого угла A равнобедренной трапеции ABCD делит боковую сторону CD (M ∊ CD) пополам ! Тренировочный вариант 476 от Ларина Задание 17 # Задача-аналог   3793  
В треугольнике АВС длина стороны AC равна 6. Точки E и F - середины сторон АВ и ВС соответственно. Отрезок EF касается окружности, вписанной в треугольник АВС. а) Докажите, что периметр треугольника ABC равен 24. б) Найдите площадь четырёхугольника АEFС, если ∠АСВ=90°
В треугольнике АВС длина стороны AC равна 6. Точки E и F - середины сторон АВ и ВС соответственно. Отрезок EF касается окружности ! ЕГЭ по математике 05.07.2024 (день пересдачи) профильный уровень Задание 17
На сторонах BC и CD квадрата ABCD отмечены точки E и K соответственно. Известно, что AE=3, EK=1, AK=sqrt10. а) Докажите, что CK =1/3BE. б) Найдите площадь четырехугольника ABCK
На сторонах BC и CD квадрата ABCD отмечены точки E и K соответственно ! ЕГЭ по математике 05.07.2024 (день пересдачи) профильный уровень Задание 17
Точки A1, B1, C1 - середины сторон BC, AC и AB треугольника ABC соответственно, в котором угол A тупой. а) Докажите, что отличная от A1 точка пересечения окружностей, описанных около треугольников A1CB1 и A1BC1, лежит на окружности, описанной около треугольника B1AC1. б) Известно, что AB=AC=10 и BC=16. Найдите радиус окружности, описанной около треугольника, вершинами которого являются центры окружностей, вписанных в треугольники A1CB1, A1BC1 и B1AC1
Точки A1, B1, C1 - середины сторон BC, AC и AB треугольника ABC соответственно, в котором угол A тупой ! ЕГЭ по математике резервный день профильный уровень Задание 17
Пятиугольник ABCDE вписан в окружность. Диагонали AD и BE пересекаются в точке М. Известно, что BCDM - параллелограмм. а) Докажите, что BC=DE. б) Найдите длину стороны AB, если известно, что DE=4, AD=7, BE=8 и AB > BC
Пятиугольник ABCDE вписан в окружность. Диагонали AD и BE пересекаются в точке М. Известно, что BCDM - параллелограмм ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 17
Окружность с центром в точке О касается сторон угла с вершиной N в точках А и В. Отрезок ВС - диаметр этой окружности. а) Докажите, что прямая АС параллельна биссектрисе угла ANB. б) Найдите длину отрезка NO, если известно, что АС=14 и АВ=48
Окружность с центром в точке О касается сторон угла с вершиной N в точках А и В. Отрезок ВС - диаметр этой окружности ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 17
Периметр треугольника АВС равен 36. Точки E и F - середины сторон АВ и ВС соответственно. Отрезок EF касается окружности, вписанной в треугольник АВС. а) Докажите, что АС=9. б) Найдите площадь треугольника АВС, если ∠ACB=90°
Периметр треугольника АВС равен 36. Точки E и F - середины сторон АВ и ВС соответственно ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 17
Пятиугольник ABCDE вписан в окружность. Известно, что AB=CD=4, a BC=DE=6. а) Докажите, что AC=CE. б) Найдите длину диагонали ВЕ, если AD=7
Пятиугольник ABCDE вписан в окружность. Известно, что AB=CD ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 17
Пятиугольник ABCDE вписан в окружность. Диагонали AD и BE пересекаются в точке М. Известно, что BCDM - параллелограмм. а) Докажите, что две стороны пятиугольника ABCDE равны между собой. б) Найдите длину стороны AB, если известно, что BE=12, BC=5, AD=9
Пятиугольник ABCDE вписан в окружность. Диагонали AD и BE пересекаются в точке М. Известно, что BCDM - параллелограмм ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 17
В треугольнике ABC с тупым углом ACB проведена высота CH. Окружность с центром H и радиусом HC второй раз пересекает стороны AC и BC в точках M и N соответственно, CD - диаметр этой окружности. а) Докажите, что ∠MDN = ∠CAB + ∠ABC. б) Найдите длину отрезка MN, если AB =16sqrt2, CM : MA = 5: 9 и CN : NB = 5 : 7
В треугольнике ABC с тупым углом ACB проведена высота CH. Окружность с центром H и радиусом HC второй раз пересекает стороны AC и BC в точках M и N соответственно ! СтатГрад Тренировочная работа № 5 по математике 11 класс 24-04-2024 Вариант МА2310509 Задание 17
Медиана BM равнобедренного треугольника ABC (AB=AC) является диаметром окружности, которая второй раз пересекает основание BC в точке K. а) Докажите, что отрезок BK втрое больше отрезка CK. б) Пусть указанная окружность пересекает сторону AB в точке N. Найдите длину стороны AB, если BK=18 и BN=17
Медиана BM равнобедренного треугольника ABC является диаметром окружности, которая второй раз пересекает основание BC в точке K ! Досрочный ЕГЭ резервный день 18-04-2024 профильный уровень Задание 17
Дан остроугольный треугольник ABC. В нём высоты BB1 и CC1 пересекаются в точке Н. а) Докажите, что ∠BAH =∠BB1C1. б) Найдите расстояние от центра описанной окружности до BC, если C1B1=18, а ∠BAC = 30°
Дан остроугольный треугольник ABC. В нём высоты BB1 и CC1 пересекаются в точке Н. а) Докажите, что ∠BAH =∠BB1C1 ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 17
В равнобедренной трапеции ABCD боковая сторона AB равна a, а основание AD=c больше основания BC=b. Построена окружность, касающаяся сторон AB, CD и AD. а) Докажите, что если b+c > 2a, то окружность пересекает сторону BC в двух точках. б) Найдите длину той части отрезка BC, которая находится внутри окружности, если c=12, b=10, a=8
В равнобедренной трапеции ABCD боковая сторона AB равна a, а основание AD=c больше основания BC=b ! 36 вариантов ЕГЭ 2024 Ященко ФИПИ школе, Вариант 9 Задание 17
Боковые стороны трапеции лежат на перпендикулярных прямых. А) Докажите, что четырехугольник с вершинами в серединах диагоналей и в серединах оснований трапеции ‐ прямоугольник. Б) Найдите площадь трапеции, если ее меньшее основание равно 7, а стороны рассмотренного выше прямоугольника равны 6 и 2,5
Боковые стороны трапеции лежат на перпендикулярных прямых ! Тренировочный вариант 457 от Ларина Задание 17
На стороне BC ромба ABCD отметили точку E так, что BE:EC=1:4. Через точку E перпендикулярно BC провели прямую, которая пересекает диагонали BD и AC в точках R и M соответственно, при этом BR:RD=1:3. а) Докажите, что точка M делит отрезок AC в отношении 2:1, считая от вершины C. б) Найдите периметр ромба ABCD, если MR=2sqrt3
На стороне BC ромба ABCD отметили точку E так, что BE:EC=1:4. Через точку E перпендикулярно BC провели прямую ! 36 вариантов ЕГЭ 2024 Ященко ФИПИ школе, Вариант 7 Задание 17
В трапеции KLMN с основаниями KN и ML провели биссектрисы углов LKN и LMN, которые пересеклись в точке P. Через точку P параллельно прямой KN провели прямую, которая пересекла стороны LK и MN соответственно в точках A и B. При этом AB=KL. а) Докажите, что трапеция KLMN равнобедренная. б) Найдите cos /_LKN, если KP:PM = 2:3, AP:PB = 1:2
В трапеции KLMN с основаниями KN и ML провели биссектрисы углов LKN и LMN ! 36 вариантов ЕГЭ 2024 Ященко ФИПИ школе, Вариант 5 Задание 17
Загрузка...
Новое на сайте
11/6/2024 12:15:00 PM 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
10/24/2024 10:25:00 PM 30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
Решаем задачи из пособия 2025 года "Математика 30 вариантов ЕГЭ Базовый уровень ФИПИ школе Ященко"
10/24/2024 8:25:00 PM Математика 36 вариантов ОГЭ 2025 ФИПИ
Математика 36 вариантов ОГЭ 2025 ФИПИ
Решаем задания типовых экзаменационных вариантов пособия 36 вариантов ОГЭ 2025 ФИПИ школе под редакцией Ященко И В
К началу страницы