Задачи 17 на планиметрию

Показаны 20 из 351 задач

На медиане AВ треугольника АВС отметили точку E. Точка F - середина отрезка BE, G - точка пересечения отрезков AD и CF. Отношение площади треугольника EFG к площади треугольника ABC равно 1:8. а) Докажите, что AE:ED = 1:3. б) Найдите площадь четырёхугольника BDGF, если BC=3sqrt29, AB=7, AC=10
На медиане AВ треугольника АВС отметили точку E. Точка F - середина отрезка BE ! 50 вариантов заданий 2024 Ященко, Вариант 11 Задание 17
На диагонали LN параллелограмма KLMN отмечены точки P и Q, причём LP=PQ=QN. Прямые KP и KQ пересекают прямую LM в точках R и T соответственно. a) Докажите, что LR:RT = 1:3. б) Найдите площадь параллелограмма KLMN, если площадь пятиугольника PRMSQ, где S - точка пересечения прямой KQ со стороной, равна 15
На диагонали LN параллелограмма KLMN отмечены точки P и Q, причём LP=PQ=QN ! 50 вариантов заданий 2024 Ященко, Вариант 6 Задание 17
Точка P лежит на стороне AC равностороннего треугольника АВС. Окружность с диаметром BP пересекает стороны AB и BC в точках M и N соответственно. Хорды MF и NE параллельны прямой BP. Отрезки FP и EP пересекают стороны AB и BC в точках T и S соответственно. а) Докажите, что треугольники APT и CSP подобны. б) Найдите отношение, в котором точка P делит отрезок AC, если площади треугольников APT и CSP относятся как 4:9
Точка P лежит на стороне AC равностороннего треугольника АВС ! 50 вариантов заданий 2024 Ященко, Вариант 1 Задание 17
В треугольнике АВС угол С острый, угол В равен 45° и АН – высота. Прямая АН пересекает описанную около треугольника окружность в точке D. А) Докажите, что прямые АВ и CD параллельны. Б) Найдите АС, если CB=8 и площадь треугольника CAD равна 12
В треугольнике АВС угол С острый, угол В равен 45° и АН – высота. Прямая АН пересекает описанную около треугольника окружность в точке D ! Тренировочный вариант 433 от Ларина Задание 17
Касательная к окружности, вписанной в квадрат ABCD, пересекает стороны AB и AD в точках M и N соответственно. а) Докажите, что периметр треугольника AMN равен стороне квадрата. б) Прямая MN пересекает прямую CD в точке P. Найдите в каком отношении делит сторону BC прямая, проходящая через P и центр окружности, если AM : MB = 1 : 3
Касательная к окружности, вписанной в квадрат ABCD, пересекает стороны AB и AD в точках M и N соответственно ! ЕГЭ 2023 по математике (резервный день Москва 01-07-2023 Задание 16
Дан остроугольный треугольник ABC с углом ∠A=60°. Известно, что AB > AC. Высоты BE и CF этого треугольника пересекаются в точке H. На отрезке BH отмечена точка K так, что BK=CH. Найдите расстояние от точки H до центра описанной около треугольника ABC окружности, если известно, что KH=3
Дан остроугольный треугольник ABC с углом ∠A=60°. Известно, что AB > AC ! ДВИ в МГУ 2023 - 7 поток (резервный день), Вариант 232 Задание 5
Биссектриса AM острого угла A равнобедренной трапеции ABCD делит боковую сторону CD пополам. Отрезок DN перпендикулярен отрезку AM и делит сторону AB в отношении AN : NB = 7 : 1. а) Докажите, что прямые BM и CN перпендикулярны. б) Найдите длину отрезка MN, если площадь трапеции равна 4sqrt55
Биссектриса AM острого угла A равнобедренной трапеции ABCD делит боковую сторону CD пополам ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 16
ABC равносторонний треугольник. На стороне AC выбрана точка M, серединный перпендикуляр к отрезку BM пересекает сторону AB в точке E, а сторону BC в точке K. а) Доказать что угол AEM равен углу CMK. б) Найти отношение площадей треугольников AEM и CMK, если AM : CM = 1 : 4
ABC равносторонний треугольник. На стороне AC выбрана точка M, серединный перпендикуляр к отрезку BM ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 16
Дана равнобедренная трапеция ABCD с основаниями AD и BC. Биссектрисы углов BAD и BCD пересекаются в точке O. Точки M и N отмечены на боковых сторонах AB и CD соответственно. Известно, что AM = MO, CN = NO. а) Докажите, что точки M, N и O лежат на одной прямой. б) Найдите AM : MB, если известно, что AO = OC и BC : AD = 1 : 7
Дана равнобедренная трапеция ABCD с основаниями AD и BC. Биссектрисы углов BAD и BCD пересекаются в точке O ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 16
Дан ромб ABCD. Прямая, перпендикулярная стороне AD, пересекает его диагональ AC в точке M, диагональ BD - в точке N, причем AM : MC = 1 : 2, BN : ND = 1 : 3. а) Докажите, что cos∠BAD = 0,2. б) Найдите площадь ромба, если MN=5
Дан ромб ABCD. Прямая, перпендикулярная стороне AD, пересекает его диагональ AC в точке M ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 16 # Два способа решения
Диагонали AC и BD четырёхугольника ABCD, вписанного в окружность, пересекаются в точке P, причём BC=CD. а) Докажите, что AB : BC = AP : PD. б) Найдите площадь треугольника COD, где O - центр окружности, вписанной в треугольник ABD, если дополнительно известно, что BD - диаметр описанной около четырёхугольника ABCD окружности, AB=6, а BC=6sqrt2
Диагонали AC и BD четырёхугольника ABCD, вписанного в окружность, пересекаются в точке P, причём BC=CD ! Тренировочная работа №2 по математике 10 класс Статград 11-05-2023 Вариант МА2200309 Задание 16
В треугольнике ABC проведены биссектрисы BM и CN. Оказалось, что точки B, C, M и N лежат на одной окружности. а) Докажите, что треугольник ABC равнобедренный. б) Пусть P — точка пересечения биссектрис треугольника ABC. Найдите площадь четырёхугольника AMPN , если MN : BC = 3:7, а BN=6
В треугольнике ABC проведены биссектрисы BM и CN. Оказалось, что точки B, C, M и N лежат на одной окружности ! Статград Тренировочная работа №5 по математике 27-04-2023 11 класс Вариант МА2210509 Задание 16 # Приведенорешениеcolor{blue} text{Приведено решение 1797} задачи- аналога   1797  
Окружность касается одной из сторон прямого угла D в точке E и пересекает другую сторону угла в точках A и B. Точка A лежит на отрезке BD, а AC - диаметр этой окружности. а) Докажите, что DE=1/2BC. б) Найдите расстояние от точки E до прямой AC, если AD=2, AB=6
Окружность касается одной из сторон прямого угла D в точке E и пересекает другую сторону угла в точках A и B ! Досрочный ЕГЭ 2023 по математике (резервный день) 19-04-2023 Задание 16
Серединный перпендикуляр к стороне AB треугольника ABC пересекает сторону AC в точке D. Окружность с центром O, вписанная в треугольник ADB, касается отрезка AD в точке P, а прямая OP пересекает сторону AB в точке K. a) Докажите, что около четырёхугольника BDOK можно описать окружность. б) Найдите радиус окружности, описанной около четырёхугольника BDOK, если AB=8, BC=sqrt15, AC=7
Серединный перпендикуляр к стороне AB треугольника ABC пересекает сторону AC в точке D ! Московский пробник 06.04.2023 Задание 16
Окружность с центром O вписана в треугольник ABC. Касательная к окружности пересекает стороны AC и BC в точках D и E соответственно. а) Докажите, что сумма углов AOD и BOE равна 180°. б) Найдите DE, если AC=BC, радиус окружности равен 3, tg(1/2 /_BAC)=(5sqrt3)/11, а разность углов AOD и BOE равна 60°
Окружность с центром O вписана в треугольник ABC. Касательная к окружности пересекает стороны AC и BC в точках D и E соответственно ! Статград Тренировочная работа №4 по математике 30-03-2023 11 класс Вариант МА2210409 Задание 16
Прямая, проходящая через вершину B прямоугольника ABCD перпендикулярна AC, пересекает AD в точке K, BK=KD. а) Доказать, что лучи BK и BD делят угол ABC на три равные части. б) Найти расстояние от центра прямоугольника до прямой CK, если AB=6sqrt7
Прямая, проходящая через вершину B прямоугольника ABCD перпендикулярна AC, пересекает AD в точке K, BK=KD ! Доказать, что лучи BK и BD делят угол ABC на три равные части
Площадь трапеции ABCD равна 30. Точка Р – середина боковой стороны АВ. Точка R на боковой стороне CD выбрана так, что 2CD=3RD. Прямые AR и PD пересекаются в точке Q , AD=2BC. a) Докажите, что точка Q – середина отрезка AR б) Найдите площадь треугольника APQ
Площадь трапеции ABCD равна 30. Точка Р – середина боковой стороны АВ. Точка R на боковой стороне CD выбрана так, что 2CD=3RD ! Тренировочный вариант 221 от Ларина Задание 16 # Решение пункта Б
В прямоугольнике ABCD диагонали пересекаются в точке O, а угол BDC равен 75°. Точка P лежит вне прямоугольника, а угол APB равен 150°. а) Докажите, что углы BAP и POB равны. б) Прямая PO пересекает сторону CD в точке F. Найдите CF, если AP=6sqrt3 и BP=4
В прямоугольнике ABCD диагонали пересекаются в точке O, а угол BDC равен 75° ! 36 вариантов ФИПИ Ященко 2023 Вариант 25 Задание 16 # Задача-аналог   2559  
В четырёхугольнике ABCD противоположные стороны не параллельны. Диагонали четырёхугольника ABCD пересекаются в точке O под прямым углом и образуют четыре подобных треугольника, у каждого из которых одна из вершин - точка O. а) Докажите, что около в четырёхугольник ABCD можно вписать окружность. б) Найдите радиус вписанной окружности, если AC=12, BD=13
Докажите, что около в четырёхугольник ABCD можно вписать окружность ! 36 вариантов ФИПИ Ященко 2023 Вариант 24 Задание 16 # Задача - аналог   2530  
Четырёхугольник ABCD вписан в окружность, причём диаметром окружности является его диагональ AC. Также известно, что в четырёхугольник ABCD можно вписать окружность. а) Докажите, что отрезки AC и BD перпендикулярны. б) Найдите радиус окружности, вписанной в четырёхугольник ABCD, если AC=50 и BD=14
Четырёхугольник ABCD вписан в окружность, причём диаметром окружности является его диагональ AC ! Тренировочная работа №1 по математике 10 класс Статград 08-02-2023 Вариант МА2200109 Задание 16
Загрузка...
Новое на сайте
8/27/2023 8:24:21 PM Демонстрационный вариант КИМ ЕГЭ 2024 года
 от ФИПИ профильный уровень по математике
Демонстрационный вариант КИМ ЕГЭ 2024 года от ФИПИ профильный уровень по математике
Новое задание на векторы первой части ЕГЭ 2024 года по математике профильног уровня. 🔥 Демонстрационный вариант контрольных измерительных материалов с решениями
К началу страницы