Найти

свойство Биссектрис

Показаны 20 из 76 задач

Серединный перпендикуляр к стороне AB треугольника ABC пересекает сторону AC в точке D. Окружность с центром O, вписанная в треугольник ADB, касается отрезка AD в точке P, а прямая OP пересекает сторону AB в точке K. a) Докажите, что около четырёхугольника BDOK можно описать окружность. б) Найдите радиус окружности, описанной около четырёхугольника BDOK, если AB=8, BC=sqrt15, AC=7
Серединный перпендикуляр к стороне AB треугольника ABC пересекает сторону AC в точке D ! Московский пробник 06.04.2023 Задание 16
На сторонах AB и BC треугольника ABC взяты точки M и K так, что угол MKB равен углу A. Отрезок BO - биссектриса треугольника MBK, MO=2, OK=3. Найти BC:AB
На сторонах AB и BC треугольника ABC взяты точки M и K так, что угол MKB равен углу A
В прямоугольнике ABCD диагонали пересекаются в точке O, а угол BDC равен 75°. Точка P лежит вне прямоугольника, а угол APB равен 150°. а) Докажите, что углы BAP и POB равны. б) Прямая PO пересекает сторону CD в точке F. Найдите CF, если AP=6sqrt3 и BP=4
В прямоугольнике ABCD диагонали пересекаются в точке O, а угол BDC равен 75° ! 36 вариантов ФИПИ Ященко 2023 Вариант 25 Задание 16 # Задача-аналог   2559  
В треугольнике ABC AB=5, BC=4, AC=6. Точка D принадлежит BC. BD:DC=2:3. CK - биссектриса. CK пересекает AD в точке M, BM пересекает AC в точке O. Найти а) Площадь треугольника ABD б) Площадь треугольника BMC
В треугольнике ABC AB=5, BC=4, AC=6. Точка D принадлежит BC ! Задача на теорему Чевы # Два способа решения: с применением теоремы Чевы и без неё
На стороне BC треугольника ABC отмечена точка D так, что AB=BD. Биссектриса BF треугольника ABC пресекает прямую AD в точке E. Из точки C на прямую AD опущен перпендикуляр CK. а) Докажите, что AB:BC=AE:EK. б) Найдите отношение площади треугольника ABE к площади четырёхугольника CDEF, если BD:DC=5:2
На стороне BC треугольника ABC отмечена точка D так, что AB=BD ! ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 16 Центр
На стороне BC параллелограмма ABCD отмечена точка M такая, что треугольник AMC - равнобедренный, так что AM=MC. а) Докажите, что центр окружности, вписанной в треугольник AMD, лежит на диагонали параллелограмма. б) Найдите радиус окружности, вписанной в треугольник AMD, если AB=7, BC=21 и /_DAB=60^@
На стороне BC параллелограмма ABCD отмечена точка M такая, что треугольник AMC - равнобедренный, так что AM=MC ! ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 16 Москва
На сторонах AC, AB и BC прямоугольного треугольника ABC с прямым углом C вне треугольника ABC построены равнобедренные прямоугольные треугольники AKC, ALB и BMC с прямыми углами K, L и M соответственно. а) Докажите, что LC - высота треугольника KLM. б) Найдите площадь треугольника KLM, если LC=6
б) Найдите площадь треугольника KLM, если LC=6 ! 36 вариантов ЕГЭ 2022 ФИПИ школе Ященко Вариант 18 Задание 16 # Приведенорешениепрототипаcolor{blue} text{Приведено решение прототипа 2573}задачи- аналога   2573  
Дан треугольник ABC. Серединный перпендикуляр у стороне AB пересекается с биссектрисой угла BAC в точке K, лежащей на стороне BC. а) Докажите, что AC^2=BC*CK. б) Найдите радиус окружности, вписанной в треугольник AKC, если sin B=0,6 и сторона AC=24
Найдите радиус окружности, вписанной в треугольник AKC, если sin B=0,6 и сторона AC=24 ! математика 50 вариантов ЕГЭ 2022 профильный уровень Ященко Вариант 16 Задание 16 # Приведенорешениепрототипаcolor{blue} text{Приведено решение прототипа 1156}задачи- аналога   1156  
Биссектрисы внешних углов при вершинах B и C треугольника ABC пересекаются в точке D. Центр окружности, вписанной в треугольник BCD, лежит на окружности, описанной около треугольника ABC. а) Докажите, что /_BAC =60^@ б) Найдите синус угла между прямыми AD и BC, если AB=10 и AC=16
б) Найдите синус угла между прямыми AD и BC, если AB=10 и AC=16 ! математика 50 вариантов ЕГЭ 2022 профильный уровень Ященко Вариант 14 Задание 16 # Приведенорешениепрототипаcolor{blue} text{Приведено решение прототипа 3200}, Задачи- аналоги   3177    3200  
Биссектрисы внешних углов при вершинах B и C треугольника ABC пересекаются в точке D. Центр окружности, вписанной в треугольник BCD, лежит на окружности, описанной около треугольника ABC. а) Докажите, что /_BAC =60^@ б) Найдите синус угла между прямыми AD и BC, если AB=7 и AC=15
Найдите синус угла между прямыми AD и BC, если AB=7 и AC=15 ! математика 50 вариантов ЕГЭ 2022 профильный уровень Ященко Вариант 13 Задание 16 # Задача- аналог   3177  
Биссектрисы внешних углов при вершинах B и C треугольника ABC пересекаются в точке D. Центр окружности, вписанной в треугольник BCD, лежит на окружности, описанной около треугольника ABC. а) Докажите, что /_BAC =60^@ б) Найдите синус угла между прямыми AD и BC, если AB=3 и AC=8
Биссектрисы внешних углов при вершинах B и C треугольника ABC пересекаются в точке D ! математика 50 вариантов ЕГЭ 2022 профильный уровень Ященко Вариант 12 Задание 16 # Задача- аналог   3200  
Окружность с центром O касается боковой стороны AB равнобедренного треугольника ABC, продолжения боковой стороны AC и продолжения основания BC в точке N. Точка M - середина основания BC. а) Докажите, что MN=AC б) Найдите OC, если стороны треугольника ABC равны 13, 13 и 10
б) Найдите OC, если стороны треугольника ABC равны 13, 13 и 10 ! математика 50 вариантов ЕГЭ 2022 профильный уровень Ященко Вариант 11 Задание 16 # Приведенорешениепрототипаcolor{blue} text{Приведено решение прототипа 3121} Аналог   3121  
Окружность с центром O касается боковой стороны AB равнобедренного треугольника ABC, продолжения боковой стороны AC и продолжения основания BC в точке N. Точка M - середина основания BC. а) Докажите, что MN=AC б) Найдите OC, если стороны треугольника ABC равны 5, 5 и 6
Окружность с центром O касается боковой стороны AB равнобедренного треугольника ABC ! математика 50 вариантов ЕГЭ 2022 профильный уровень Ященко Вариант 9 Задание 16 # Аналог   807  
В равнобедренной трапеции KLMN с с основаниями LM и KN расположены две окружности с центрами O1 и O2, каждая из которых касается другой окружности, двух боковых сторон и одного из оснований. Пусть общая касательная окружностей, проходящая через их точку касания, пересекает боковые стороны в точках A и B. а) Докажите, что угол O1AO2=90 град. б)Найдите площадь трапеции KLMN, если известно, что AB=6sqrt3, а радиус одной окружности втрое больше радиуса другой
В равнобедренной трапеции KLMN с с основаниями LM и KN расположены две окружности с центрами O1 и O2 ! математика 50 вариантов ЕГЭ 2022 профильный уровень Ященко Вариант 6 Задание 16
Биссектриса угла A параллелограмма ABCD пересекает диагональ BD и сторону BC в точках K и L соответственно. Найдите площадь треугольника DKL, если известно, что площадь параллелограмма равна 8 и что AD=3AB
Биссектриса угла A параллелограмма ABCD пересекает диагональ BD и сторону BC в точках K и L соответственно ! ДВИ в МГУ 2021 - 2 поток, вариант 212 Задание 5
Окружность с центром О, построенная на катете АС прямоугольного треугольника АВС, как на диаметре, пересекает гипотенузу АВ в точках А и D. Касательная, проведенная к этой окружности в точке D, пересекает катет ВС в точке М. а) Докажите, что ВМ=СМ б) Прямая DM пересекает прямую АС в точке Р, прямая ОМ пересекает прямую ВР в точке К. Найдите ВК:КР, если cos /_BAC=(2sqrt5)/5
Окружность с центром О, построенная на катете АС прямоугольного треугольника АВС, как на диаметре ! ЕГЭ по математике 2021 Резервный день 29-06-2021 Задание 16
В прямоугольном треугольнике ABC с прямым углом C проведены биссектриса AL и высота CH. Найдите косинус угла BAC, если HL || AC
В прямоугольном треугольнике ABC с прямым углом C проведены биссектриса AL и высота CH ! ДВИ в МГУ 2020 - 3 поток, вариант 203 Задание 5
Точка O - центр вписанной в треугольник ABC окружности. Прямая BO вторично пересекает описанную около этого треугольника окружность в точке P. а) Докажите, что /_POA=/_PAO. б) Найдите площадь треугольника APO, если радиус описанной около треугольника ABC окружности равен 6, /_BAC=75^@, /_ABC=60^@
Прямая BO вторично пересекает описанную около этого треугольника окружность в точке P ! 36 вариантов ФИПИ Ященко 2022 Вариант 21 Задание 16 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 11 Задание 16 # Задача-аналог   2623  
Дана правильная треугольная пирамида. Известно, что центр сферы, описанный около пирамиды, равноудалён от боковых рёбер и от плоскости основания пирамиды. Найдите радиус сферы, вписанной в эту пирамиду, если ребро её основания равно 12
Дана правильная треугольная пирамида. Известно, что центр сферы, описанный около пирамиды, равноудалён от боковых рёбер и от плоскости основания пирамиды ! ДВИ в МГУ 2020 - 4 поток, вариант 204 Задание 6
В треугольнике ABC проведена биссектриса BL. На стороне AB взята точка K так, что отрезки KL и BC параллельны. Окружность, описанная около треугольника AKC, пересекает прямую BC повторно в точке M. а) Докажите, что AK = BM. б) Найдите площадь четырёхугольника AKMC, если площадь треугольника ABC равна 100 и AB : BC = 2 : 3
В треугольнике ABC проведена биссектриса BL ! Тренировочная работа №2 по математике 10 класс Статград 13-05-2021 Вариант МА2000710 Задание 16
Загрузка...
Новое на сайте
8/27/2023 8:24:21 PM Демонстрационный вариант КИМ ЕГЭ 2024 года
 от ФИПИ профильный уровень по математике
Демонстрационный вариант КИМ ЕГЭ 2024 года от ФИПИ профильный уровень по математике
Новое задание на векторы первой части ЕГЭ 2024 года по математике профильног уровня. 🔥 Демонстрационный вариант контрольных измерительных материалов с решениями
К началу страницы