Дельтоид

Показаны 8 из 8 задач

?
В это поле можно ввести текст для поиска по вхождению полной подстроки:
Например:
пирам - будут найдены все условия задач, содержащие слова "пирамида", "Пирамиду","пирамиды" и тд.
треугольной пирамиды - будут найдены все условия задач, содержащие точную подстроку "треугольной пирамиды"
log - будут найдены все условия задач с логарифмами.
Надо иметь ввиду, что фильтрация будет происходить по текущему разделу.
Если необходимо найти более сложные строки, например, содержащие одновременно слова "Объём" "треугольной" "середины" "рёбер" нужно воспользоваться расширенным режимом поиска - сменив опцию "Содерж" на % из списка. Символ подстановки % соответствует любому количеству любых символов. Далее вводим текст %Объём%треуг%серед%бер% и примененяем фильтр, нажав ENTER (или жёлтую кнопку "Применить фильтр по условиям")
Окружность, вписанная в квадрат АВСD, касается его стороны ВС в точке К. Отрезки АК и DK пересекают окружность в точках P и Q. Найдите длину отрезка PQ, если сторона квадрата равна 1
Окружность, вписанная в квадрат АВСD, касается его стороны ВС в точке К. Отрезки АК и DK пересекают окружность в точках P и Q ! Тренировочный вариант 457 от Ларина Задание 1
Биссектриса AM острого угла A равнобедренной трапеции ABCD делит боковую сторону CD пополам. Отрезок DN перпендикулярен отрезку AM и делит сторону AB в отношении AN : NB = 7 : 1. а) Докажите, что прямые BM и CN перпендикулярны. б) Найдите длину отрезка MN, если площадь трапеции равна 4sqrt55
Биссектриса AM острого угла A равнобедренной трапеции ABCD делит боковую сторону CD пополам ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 16 # Задача-аналог   4496  
Диагонали AC и BD четырёхугольника ABCD, вписанного в окружность, пересекаются в точке P, причём BC=CD. а) Докажите, что AB : BC = AP : PD. б) Найдите площадь треугольника COD, где O - центр окружности, вписанной в треугольник ABD, если дополнительно известно, что BD - диаметр описанной около четырёхугольника ABCD окружности, AB=6, а BC=6sqrt2
Диагонали AC и BD четырёхугольника ABCD, вписанного в окружность, пересекаются в точке P, причём BC=CD ! Тренировочная работа №2 по математике 10 класс Статград 11-05-2023 Вариант МА2200309 Задание 16
Точка D лежит на основании AC равнобедренного треугольника ABC. точки I и J  - центры окружностей, описанных около треугольников ABD и CBD соответственно. а) Докажите, что прямые BI и DJ параллельны. б) Найдите IJ, если AC=12, cos/_BDC=2/7
Точка D лежит на основании AC равнобедренного треугольника ABC. точки I и J  - центры окружностей ! ЕГЭ 2022 по математике 27.06.2022 резервный день Задание 16
Около окружности с центром O описана трапеция ABCD с основаниями AD и BC. а) Докажите, что треугольник AOB прямоугольный б) Найдите отношение большего основания трапеции к меньшему, если известно, что AB = CD, а площадь четырёхугольника с вершинами в точках касания окружности со сторонами трапеции составляет 16/81 площади трапеции ABCD
Площадь четырёхугольника с вершинами в точках касания окружности со сторонами трапеции составляет 16/81 площади трапеции ABCD ! 36 вариантов ФИПИ Ященко 2022 Вариант 6 Задание 16 # Приведенорешениепрототипаcolor{blue} text{Приведено решение прототипа 3126} Аналог   3126  
Около окружности с центром O описана трапеция ABCD с основаниями AD и BC. а) Докажите, что /_AOB = /_COD=90^@ б) Найдите отношение большего основания трапеции к меньшему, если известно, что AB = CD, а площадь четырёхугольника с вершинами в точках касания окружности со сторонами трапеции составляет 12/49 площади трапеции ABCD
б) Найдите отношение большего основания трапеции к меньшему, если известно, что AB = CD ! 36 вариантов ФИПИ Ященко 2022 Вариант 5 Задание 16
Около окружности с центром O описана трапеция ABCD с основаниями AD и BC. а) Докажите, что AB — диаметр окружности, описанной около треугольника AOB. б) Найдите отношение площади четырёхугольника, вершины которого — точки касания окружности со сторонами трапеции, к площади самой трапеции ABCD, если известно, что AB = CD, а основания трапеции относятся как 1 : 2
Около окружности с центром O описана трапеция ABCD с основаниями AD и BC ! Статград Тренировочная работа №1 28.09.2021 Вариант МА2110109 Задание 16
Точка E лежит на высоте SO, а точка F - на боковом ребре SC правильной четырёхугольной пирамиды SABCD, причём SE : EO = SF : FC = 2 : 1. а) Докажите, что плоскость BEF пересекает ребро SD в его середине. б) Найдите площадь сечения пирамиды плоскостью BEF, если AB = 8, SO =14
Точка E лежит на высоте SO, а точка F - на боковом ребре SC правильной четырёхугольной пирамиды SABCD ! ФИПИ Открытый вариант КИМ ЕГЭ по математике 2021 Задание 14
Загрузка...
Новое на сайте
11/6/2024 12:15:00 PM 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
10/24/2024 10:25:00 PM 30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
Решаем задачи из пособия 2025 года "Математика 30 вариантов ЕГЭ Базовый уровень ФИПИ школе Ященко"
10/24/2024 8:25:00 PM Математика 36 вариантов ОГЭ 2025 ФИПИ
Математика 36 вариантов ОГЭ 2025 ФИПИ
Решаем задания типовых экзаменационных вариантов пособия 36 вариантов ОГЭ 2025 ФИПИ школе под редакцией Ященко И В
К началу страницы