Трапеция

Показаны 20 из 180 задач

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь
На клетчатой бумаге с размером клетки 1×1 изображена трапеция ! СтатГрад Тренировочная работа № 1 по математике для 9 класса (27.09.2023) вариант МА2390101 Задание 18
Дана пирамида SABCD, в основании которой лежит прямоугольник ABCD. Сечение пирамиды - трапеция KLMN, причём точки K, L, M и N лежат на рёбрах SB, SA, SD и SC соответственно. Известно, что основания этой трапеции KL = 4, MN = 3, а SK : KB = 2 : 1. a) Докажите, что точки M и N – середины рёбер SD и SC. б) Пусть Н – точка пересечения диагоналей прямоугольника ABCD, а SH – высота пирамиды SABCD. Найдите SH, если известно, что площадь прямоугольника ABCD равна 48, а площадь трапеции KLMN равна 24
Дана пирамида SABCD, в основании которой лежит прямоугольник ABCD. Сечение пирамиды - трапеция KLMN, причём точки K, L, M и N лежат на рёбрах SB, SA, SD и SC соответственно ! ЕГЭ 2023 по математике (резервный день Москва 01-07-2023 Задание 13 # Условие пункта б) ... площадь трапеции KLMN равна 24,5 ? Надо уточнить
Биссектриса AM острого угла A равнобедренной трапеции ABCD делит боковую сторону CD пополам. Отрезок DN перпендикулярен отрезку AM и делит сторону AB в отношении AN : NB = 7 : 1. а) Докажите, что прямые BM и CN перпендикулярны. б) Найдите длину отрезка MN, если площадь трапеции равна 4sqrt55
Биссектриса AM острого угла A равнобедренной трапеции ABCD делит боковую сторону CD пополам ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 16
В правильной треугольной призме ABCA1B1C1 точка M является серединой ребра BB1, а точка N - середина ребра A1C1. Плоскость альфа, параллельная прямым AM и B1N, проходит через середину отрезка MN. a) Докажите, что плоскость альфа проходит через середину отрезка B1M. б) Найдите площадь сечения призмы ABCA1B1C1 плоскостью альфа, если все рёбра призмы имеют длину 4
В правильной треугольной призме ABCA1B1C1 точка M является серединой ребра BB1, а точка N - середина ребра A1C1 ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 13
Дана прямая призма, в основании которой равнобедренная трапеция с основаниями AD = 5 и BC = 3. M - точка, которая делит сторону A1D1 в отношении 2 : 3, К - середина DD1. a) Доказать, что MCК || BD. б) Найти тангенс угла между плоскостью MKC и плоскостью основания, если ∠ADC = 60°, а ∠CKM = 90°
Дана прямая призма, в основании которой равнобедренная трапеция с основаниями AD = 5 и BC = 3. M - точка, которая делит сторону A1D1 в отношении ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 13
Основанием прямой призмы ABCDA1B1C1D1 является параллелограмм. На рёбрах A1B1, B1C1 и BC отмечены точки M, K и N соответственно, причем B1K : KC1 = 1 : 2, а AMKN - равнобедренная трапеция с основаниями 2 и 3. а) Докажите, что N - середина BC. б) Найдите площадь трапеции AMKN, если объем призмы ABCDA1B1C1D1 равен 12, а ее высота равна 2
Основанием прямой призмы ABCDA1B1C1D1 является параллелограмм. На рёбрах A1B1, B1C1 и BC отмечены точки M, K и N ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 13
Дана равнобедренная трапеция ABCD с основаниями AD и BC. Биссектрисы углов BAD и BCD пересекаются в точке O. Точки M и N отмечены на боковых сторонах AB и CD соответственно. Известно, что AM = MO, CN = NO. а) Докажите, что точки M, N и O лежат на одной прямой. б) Найдите AM : MB, если известно, что AO = OC и BC : AD = 1 : 7
Дана равнобедренная трапеция ABCD с основаниями AD и BC. Биссектрисы углов BAD и BCD пересекаются в точке O ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 16
Боковые стороны трапеции равны 15 и 13, а длины оснований относятся как 1:3. Найдите площадь трапеции, если известно, что в неё можно вписать окружность
Боковые стороны трапеции равны 15 и 13, а длины оснований относятся как 1:3 ! Найдите площадь трапеции, если известно, что в неё можно вписать окружность
ABCD - равнобедренная трапеция. AC и BD взаимно перпендикулярны. Высота трапеции равна 10. Найти площадь трапеции
ABCD - равнобедренная трапеция. AC и BD взаимно перпендикулярны
Средняя линия EF трапеции ABCD (AD || BC) равна 20. Точка пересечения биссектрис углов A и В лежит на отрезке EF. Найти периметр трапеции
Средняя линия EF трапеции ABCD (AD || BC) равна 20 ! Найти периметр трапеции
В треугольнике ABC средняя линия DE параллельна стороне AB. Найдите площадь треугольника ABC, если площадь трапеции ABED равна 48
Найдите площадь треугольника ABC, если площадь трапеции ABED равна 48 ! 36 вариантов ФИПИ Ященко 2023 Вариант 30 Задание 1
В трапеции ABCD (AD || BC) угол ADB в 2 раза меньше угла ACB, BC=AC=5. Найдите сторону CD
В трапеции ABCD (AD || BC) угол ADB в 2 раза меньше угла ACB, BC=AC=5 ! Найдите CD
Найти площадь трапеции, если её боковые стороны равны 25 и 26, а основания 11 и 28
Боковые стороны трапеции равны 25 и 26, а основания 11 и 28 ! Найдите площадь трапеции
Сумма углов при одном из оснований трапеции равна 90°. Докажите, что отрезок, соединяющий середины оснований трапеции, равен их полуразности
Свойство трапеции ! Сумма углов при одном из оснований трапеции равна 90°
Площадь трапеции ABCD равна 30. Точка Р – середина боковой стороны АВ. Точка R на боковой стороне CD выбрана так, что 2CD=3RD. Прямые AR и PD пересекаются в точке Q , AD=2BC. a) Докажите, что точка Q – середина отрезка AR б) Найдите площадь треугольника APQ
Площадь трапеции ABCD равна 30. Точка Р – середина боковой стороны АВ. Точка R на боковой стороне CD выбрана так, что 2CD=3RD ! Тренировочный вариант 221 от Ларина Задание 16 # Решение пункта Б
Боковая сторона равнобедренной трапеции равна её меньшему основанию, угол при основании равен 60°, большее основание равно 28. Найдите радиус описанной окружности этой трапеции
Боковая сторона равнобедренной трапеции равна её меньшему основанию, угол при основании равен 60° ! 36 вариантов ФИПИ Ященко 2023 Вариант 14 Задание 1
Около трапеции описана окружность. Периметр трапеции равен 38, средняя линия равна 11. Найдите боковую сторону трапеции
Около трапеции описана окружность. Периметр трапеции равен 38, средняя линия равна 11 ! 36 вариантов ФИПИ Ященко 2023 Вариант 13 Задание 1
Основания равнобедренной трапеции равны 45 и 24. Тангенс острого угла равен 2/7. Найдите высоту трапеции
Основания равнобедренной трапеции равны 45 и 24. Тангенс острого угла равен 2/7 ! 36 вариантов ФИПИ Ященко 2023 Вариант 9 Задание 1
На сторонах AB и CD четырёхугольника ABCD, около которого можно описать окружность, отмечены точки K и N соответственно. Около четырёхугольников AKND и BCNK также можно описать окружность. Косинус одного из углов четырёхугольника ABCD равен 0,25. а) Докажите, что четырёхугольник ABCD является равнобедренной трапецией. б) Найдите радиус окружности, описанной около четырёхугольника AKND, если радиус окружности, описанной около четырёхугольника ABCD, равен 8, AK:KB = 2:5, а BC < AD и BC = 4
На сторонах AB и CD четырёхугольника ABCD, около которого можно описать окружность, отмечены точки K и N соответственно ! 36 вариантов ФИПИ Ященко 2023 Вариант 9 Задание 16
В трапеции ABCD с меньшим основанием BC точки E и F - середины сторон ВC и AD соответственно. В каждый из четырёхугольников ABEF и ECDF можно вписать окружность. а) Докажите, что трапеция ABCD равнобедренная. б) Найдите радиус окружности, описанной около трапеции ABCD, если AB=7, а радиус окружности, вписанной в четырёхугольник ABEF, равен 2,5
В трапеции ABCD с меньшим основанием BC точки E и F - середины сторон ВC и AD соответственно ! 36 вариантов ФИПИ Ященко 2023 Вариант 5 Задание 16
Загрузка...
Новое на сайте
8/27/2023 8:24:21 PM Демонстрационный вариант КИМ ЕГЭ 2024 года
 от ФИПИ профильный уровень по математике
Демонстрационный вариант КИМ ЕГЭ 2024 года от ФИПИ профильный уровень по математике
Новое задание на векторы первой части ЕГЭ 2024 года по математике профильног уровня. 🔥 Демонстрационный вариант контрольных измерительных материалов с решениями
К началу страницы