Параллельность прямой и плоскости

Показаны 20 из 75 задач

?
В это поле можно ввести текст для поиска по вхождению полной подстроки:
Например:
пирам - будут найдены все условия задач, содержащие слова "пирамида", "Пирамиду","пирамиды" и тд.
треугольной пирамиды - будут найдены все условия задач, содержащие точную подстроку "треугольной пирамиды"
log - будут найдены все условия задач с логарифмами.
Надо иметь ввиду, что фильтрация будет происходить по текущему разделу.
Если необходимо найти более сложные строки, например, содержащие одновременно слова "Объём" "треугольной" "середины" "рёбер" нужно воспользоваться расширенным режимом поиска - сменив опцию "Содерж" на % из списка. Символ подстановки % соответствует любому количеству любых символов. Далее вводим текст %Объём%треуг%серед%бер% и примененяем фильтр, нажав ENTER (или жёлтую кнопку "Применить фильтр по условиям")
В правильном тетраэдре ABCD точки М и N - середины ребер АВ и CD соответственно. Плоскость α параллельна прямым АВ и CD и пересекает прямую MN в точке К. а) Докажите, что плоскость α перпендикулярна прямой MN. б) Пусть плоскость α пересекает ребро AC в точке L. Найдите длину отрезка AL, если известно, что MК=1, КN=2
В правильном тетраэдре ABCD точки М и N - середины ребер АВ и CD соответственно. Плоскость α параллельна прямым АВ и CD и пересекает прямую MN в точке К ! ЕГЭ по математике 05.07.2024 (день пересдачи) профильный уровень Задание 14
В правильной четырехугольной пирамиде SABCD с основанием ABCD точка O - центр основания пирамиды, точка M - середина ребра SC, точка K делит ребро BC в отношении BK:KC=3:2, а AB=4 и SO=2sqrt23. а) Докажите, что плоскость OMK параллельна прямой SA. б) Найдите длину отрезка, по которому плоскость OMK пересекает грань SAD
В правильной четырехугольной пирамиде SABCD с основанием ABCD точка O - центр основания пирамиды, точка M - середина ребра SC ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 14
Все рёбра правильной четырёхугольной пирамиды SABCD с основанием ABCD равны 4. Точка O - центр основания пирамиды. Плоскость, параллельная прямой SA и проходящая через точку O, пересекает рёбра SC и SD в точках M и N соответственно. Точка N делит ребро SD в отношении SN:ND=1:3. а) Докажите, что точка M - середина ребра SC. б) Найдите длину отрезка, по которому плоскость OMN пересекает грань SBC
Найдите длину отрезка, по которому плоскость OMN пересекает грань SBC ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 14
В правильном тетраэдре ABCD точки M и N – середины ребер AB и CD соответственно. Плоскость α перпендикулярна прямой MN и пересекает ребро BC в точке K. а) Докажите, что прямая MN перпендикулярна ребрам AB и CD. б) Найдите площадь сечения тетраэдра ABCD плоскостью α, если известно, что BK=1, KC=5
В правильном тетраэдре ABCD точки M и N – середины ребер AB и CD соответственно ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 14
В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 стороны основания равны 4, а боковые рёбра - 5. а) Докажите, что плоскость A1C1E перпендикулярна плоскости BB1E1. б) Найдите угол между плоскостями A1C1E и ABC
В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 стороны основания равны 4, а боковые рёбра - 5 ! Тренировочная работа №2 по математике 10 класс Статград 16-05-2024 Вариант МА2300309 Задание 14
Диагонали BE и DF основания ABCDEF правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1 пересекаются в точке P, а диагонали FE1 и EF1 боковой грани EFF1E1 пересекаются в точке Q. а) Докажите, что прямая QP параллельна плоскости CB1E1. б) Найдите расстояние между прямой QP и плоскостью CB1E1, если сторона основания призмы ABCDEFA1B1C1D1E1F1 равна 2sqrt3, а её высота равна 4
Диагонали BE и DF основания ABCDEF правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1 пересекаются в точке P ! СтатГрад Тренировочная работа № 5 по математике 11 класс 24-04-2024 Вариант МА2310509 Задание 14
В прямоугольном параллелепипеде ABCDA1B1C1D1 известно, что AB=3, AD=4, AA1=6. Через точки B1 и D параллельно AC проведена плоскость, пересекающая ребро CC1 в точке L. а) Докажите, что L - середина CC1. б) Найдите расстояние от точки B до плоскости сечения
В прямоугольном параллелепипеде ABCDA1B1C1D1 известно, что AB=3, AD=4, AA1=6. Через точки B1 и D параллельно AC проведена плоскость ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 14
Дана правильная четырёхугольная призма ABCDA1B1C1D1. Плоскость α проходит через вершины В1 и D и пересекает ребра АА1 и СС1 в точках М и К соответственно. Известно, что четырёхугольник MB1KD – ромб. а) Докажите, что точка М - середина ребра АА1. б) Найдите высоту призмы ABCDA1B1C1D1, если площадь её основания ABCD равна 4, а площадь ромба MB1KD равна 4sqrt2
Дана правильная четырёхугольная призма ABCDA1B1C1D1. Плоскость α проходит через вершины В1 и D и пересекает ребра АА1 и СС1 в точках М и К соответственно ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 14
Основанием четырёхугольной пирамиды SABCD является квадрат ABCD, ребро SA перпендикулярно плоскости основания. Через середины рёбер BC и CD параллельно прямой SC проведена плоскость альфа. а) Докажите, что точка пересечения плоскости альфа с ребром AS делит это ребро в отношении 1:3, считая от вершины S. б) Найдите площадь сечения пирамиды SABCD плоскостью альфа, если AB=4, AS=3sqrt2
Основанием четырёхугольной пирамиды SABCD является квадрат ABCD, ребро SA перпендикулярно плоскости основания ! 36 вариантов ЕГЭ 2024 Ященко ФИПИ школе, Вариант 7 Задание 14
На рёбрах AB и A1C1 правильной треугольной призмы ABCA1B1C1 отметили соответственно точки T и K так, что AT:TB=1:2 и A1K=KC1. Через точки K и C параллельно прямой TA1 проведена плоскость α. а) Докажите, что точка пересечения плоскости α с ребром AB делит это ребро в отношении 2:1, считая от точки A. б) Найдите площадь сечения призмы ABCA1B1C1 плоскостью α, если AB=6sqrt7, а A1A=3
Докажите, что точка пересечения плоскости α с ребром AB делит это ребро в отношении 2:1, считая от точки A ! 36 вариантов ЕГЭ 2024 Ященко ФИПИ школе, Вариант 6 Задание 14
На рёбрах AB и B1C1 правильной треугольной призмы ABCA1B1C1 отметили соответственно точки T и K так, что AT:TB=2:1 и B1K=KC1. Через точки K и C параллельно прямой TB1 проведена плоскость α. а) Докажите, что точка пересечения плоскости α с ребром AB является серединой отрезка AT. б) Найдите площадь сечения призмы ABCA1B1C1 плоскостью α, если AB=42, а AA1=3sqrt7
На рёбрах AB и B1C1 правильной треугольной призмы ABCA1B1C1 отметили соответственно точки T и K так, что AT:TB=2:1 и B1K=KC1 ! 36 вариантов ЕГЭ 2024 Ященко ФИПИ школе, Вариант 5 Задание 14
Основанием правильной треугольной пирамиды PABC является треугольник ABC, AP =1,3AB. Через точку A перпендикулярно апофеме грани BCP проведена плоскость альфа. а) Докажите, что плоскость альфа делит апофему грани BCP в отношении 119:25, считая от точки P. б) Найдите угол между прямой AC и плоскостью альфа
Основанием правильной треугольной пирамиды PABC является треугольник ABC, AP =1,3AB ! 36 вариантов ЕГЭ 2024 Ященко ФИПИ школе, Вариант 3 Задание 14
В тетраэдре АВСD противоположные ребра попарно равны. Точки М, N и К – середины боковых ребер BD, AC и DC соответственно. Через точку К проведена секущая плоскость alpha, параллельная ребрам BD и AC. А) Докажите, что прямая MN перпендикулярна секущей плоскости. Б) Найдите расстояние от точки М до плоскости alpha, если AC=BD=14, BC=AD=13, AB=CD=15
В тетраэдре АВСD противоположные ребра попарно равны. Точки М, N и К – середины боковых ребер BD, AC и DC соответственно ! Тренировочный вариант 433 от Ларина Задание 14
Дана пирамида SABCD, в основании которой лежит прямоугольник ABCD. Сечение пирамиды - трапеция KLMN, причём точки K, L, M и N лежат на рёбрах SB, SA, SD и SC соответственно. Известно, что основания этой трапеции KL = 4, MN = 3, а SK : KB = 2 : 1. a) Докажите, что точки M и N – середины рёбер SD и SC. б) Пусть Н – точка пересечения диагоналей прямоугольника ABCD, а SH – высота пирамиды SABCD. Найдите SH, если известно, что площадь прямоугольника ABCD равна 48, а площадь трапеции KLMN равна 24
Дана пирамида SABCD, в основании которой лежит прямоугольник ABCD. Сечение пирамиды - трапеция KLMN, причём точки K, L, M и N лежат на рёбрах SB, SA, SD и SC соответственно ! ЕГЭ 2023 по математике (резервный день Москва 01-07-2023 Задание 13 # Условие пункта б) ... площадь трапеции KLMN равна 24,5 ? Надо уточнить
В правильной треугольной призме ABCA1B1C1 точка M является серединой ребра BB1, а точка N - середина ребра A1C1. Плоскость альфа, параллельная прямым AM и B1N, проходит через середину отрезка MN. a) Докажите, что плоскость альфа проходит через середину отрезка B1M. б) Найдите площадь сечения призмы ABCA1B1C1 плоскостью альфа, если все рёбра призмы имеют длину 4
В правильной треугольной призме ABCA1B1C1 точка M является серединой ребра BB1, а точка N - середина ребра A1C1 ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 13
Точка M - середина ребра BC параллелепипеда ABCDA1B1C1D1. а) Докажите, что плоскость AMB1 параллельна прямой A1C. б) Найдите расстояние между прямой A1C и плоскостью AMB1, если параллелепипед прямоугольный, AB=12, AD=12 и AA1=6
Точка M - середина ребра BC параллелепипеда ABCDA1B1C1D1. а) Докажите, что плоскость AMB1 параллельна прямой A1C ! Тренировочная работа №2 по математике 10 класс Статград 11-05-2023 Вариант МА2200309 Задание 13
Дан тетраэдр ABCD. Точки K, L, M и N лежат на ребрах AC, AD, DB и BC соответственно, так, что четырехугольник KLMN квадрат со стороной 2. AK:KC = 2 : 3. a) Докажите, что BM:MD = 2 : 3. б) Найдите расстояние от точки С до плоскости KLMN, если объем тетраэдра равен 25
Дан тетраэдр ABCD. Точки K, L, M и N лежат на ребрах AC, AD, DB и BC соответственно, так, что четырехугольник KLMN квадрат со стороной 2. AK:KC = 2 : 3 ! Досрочный ЕГЭ по математике 27-03-2023 Задание 13
Сторона основания правильной четырёхугольной пирамиды SABCD относится к боковому ребру как 1 : sqrt2. Через вершину D проведена плоскость α, перпендикулярная боковому ребру SB и пересекающая его в точке M. а) Докажите, что сечение пирамиды SABCD плоскостью альфа - это четырёхугольник, диагонали которого перпендикулярны. б) Найдите площадь этого сечения, если боковое ребро пирамиды равно 6
Докажите, что сечение пирамиды SABCD плоскостью альфа - это четырёхугольник, диагонали которого перпендикулярны ! 36 вариантов ФИПИ Ященко 2023 Вариант 8 Задание 13
В основании пирамиды SABCD лежит трапеция ABCD, с большим основанием AD. Диагонали трапеции пересекаются в точке O. Точки M и N - середины боковых сторон AB и CD соответственно. Плоскость α проходит через точки M и N параллельно прямой SO. а) Докажите, что сечение пирамиды SABCD плоскостью α является трапецией. б) Найдите площадь сечения пирамиды SABCD плоскостью α, если AD=9, BC=7, SO=6, а прямая SO перпендикулярна прямой AD
В основании пирамиды SABCD лежит трапеция ABCD, с большим основанием AD ! 36 вариантов ФИПИ Ященко 2023 Вариант 1 Задание 13 # ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 13 Санкт-Петербург, Центр # Задачи-Аналоги   3357    3361  
В правильной треугольной призме ABCA1B1C1 точка M - середина ребра CC1, точки K и N отмечены на рёбрах AB и A1B1 соответственно, так что AK : KB = B1N : NA1. а) Докажите, что плоскость MKN перпендикулярна плоскости AA1B1. б) Найдите площадь сечения плоскостью MKN, если AB=BB1=42, AK:KB = 1:41
В правильной треугольной призме ABCA1B1C1 точка M - середина ребра CC1, точки K и N отмечены на рёбрах AB и A1B1 соответственно ! ЕГЭ 2022 по математике 27.06.2022 резервный день Задание 13
Загрузка...
Новое на сайте
11/6/2024 12:15:00 PM 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
10/24/2024 10:25:00 PM 30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
Решаем задачи из пособия 2025 года "Математика 30 вариантов ЕГЭ Базовый уровень ФИПИ школе Ященко"
10/24/2024 8:25:00 PM Математика 36 вариантов ОГЭ 2025 ФИПИ
Математика 36 вариантов ОГЭ 2025 ФИПИ
Решаем задания типовых экзаменационных вариантов пособия 36 вариантов ОГЭ 2025 ФИПИ школе под редакцией Ященко И В
К началу страницы