Задачи 14 на стереометрию

Показаны 20 из 376 задач

В правильной треугольной пирамиде MABC двугранный угол при основании равен arctg2. Через точку K ребра MC и вершины A и B проходит плоскость альфа так, что площадь сечения пирамиды плоскостью альфа относится к площади основания как 1 : sqrt2. а) Докажите, что прямая MC перпендикулярна плоскости альфа. б) Найдите объём пирамиды MABK, если объём пирамиды MABC равен 24sqrt7
В правильной треугольной пирамиде MABC двугранный угол при основании равен arctg2 ! 50 вариантов заданий 2024 Ященко, Вариант 11 Задание 14
В правильной треугольной пирамиде SABC через середины боковых рёбер SA и SB перпендикулярно основанию ABC проведена плоскость альфа. а) Докажите, что плоскость альфа делит медиану CE основания пирамиды в отношении 5:1, считая от вершины C. б) Найдите объём пирамиды с вершиной в точке C, основанием которой служит сечение пирамиды SABC плоскостью альфа, если AB=60, SA=37
В правильной треугольной пирамиде SABC через середины боковых рёбер SA и SB перпендикулярно основанию ABC проведена плоскость альфа ! 50 вариантов заданий 2024 Ященко, Вариант 6 Задание 14
В тетраэдре АВСD противоположные ребра попарно равны. Точки М, N и К – середины боковых ребер BD, AC и DC соответственно. Через точку К проведена секущая плоскость alpha, параллельная ребрам BD и AC. А) Докажите, что прямая MN перпендикулярна секущей плоскости. Б) Найдите расстояние от точки М до плоскости alpha, если AC=BD=14, BC=AD=13, AB=CD=15
В тетраэдре АВСD противоположные ребра попарно равны. Точки М, N и К – середины боковых ребер BD, AC и DC соответственно ! Тренировочный вариант 433 от Ларина Задание 14
В пирамиде ABCD рёбра DA, DB и DC попарно перпендикулярны, а AB=BC=AC=5sqrt2. а) Докажите, что BD=CD. б) На рёбрах DA и DC отмечены точки M и N соответственно, причём DM:MA=DN:NC=2:3. Найдите площадь сечения MNB
В пирамиде ABCD рёбра DA, DB и DC попарно перпендикулярны, а AB=BC=AC=5sqrt2 ! Демонстрационный вариант ЕГЭ 2024 профиль Задание 14
Дана пирамида SABCD, в основании которой лежит прямоугольник ABCD. Сечение пирамиды - трапеция KLMN, причём точки K, L, M и N лежат на рёбрах SB, SA, SD и SC соответственно. Известно, что основания этой трапеции KL = 4, MN = 3, а SK : KB = 2 : 1. a) Докажите, что точки M и N – середины рёбер SD и SC. б) Пусть Н – точка пересечения диагоналей прямоугольника ABCD, а SH – высота пирамиды SABCD. Найдите SH, если известно, что площадь прямоугольника ABCD равна 48, а площадь трапеции KLMN равна 24
Дана пирамида SABCD, в основании которой лежит прямоугольник ABCD. Сечение пирамиды - трапеция KLMN, причём точки K, L, M и N лежат на рёбрах SB, SA, SD и SC соответственно ! ЕГЭ 2023 по математике (резервный день Москва 01-07-2023 Задание 13 # Условие пункта б) ... площадь трапеции KLMN равна 24,5 ? Надо уточнить
В правильной треугольной призме ABCA1B1C1 точка M является серединой ребра BB1, а точка N - середина ребра A1C1. Плоскость альфа, параллельная прямым AM и B1N, проходит через середину отрезка MN. a) Докажите, что плоскость альфа проходит через середину отрезка B1M. б) Найдите площадь сечения призмы ABCA1B1C1 плоскостью альфа, если все рёбра призмы имеют длину 4
В правильной треугольной призме ABCA1B1C1 точка M является серединой ребра BB1, а точка N - середина ребра A1C1 ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 13
Дана прямая призма, в основании которой равнобедренная трапеция с основаниями AD = 5 и BC = 3. M - точка, которая делит сторону A1D1 в отношении 2 : 3, К - середина DD1. a) Доказать, что MCК || BD. б) Найти тангенс угла между плоскостью MKC и плоскостью основания, если ∠ADC = 60°, а ∠CKM = 90°
Дана прямая призма, в основании которой равнобедренная трапеция с основаниями AD = 5 и BC = 3. M - точка, которая делит сторону A1D1 в отношении ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 13
Основанием прямой призмы ABCDA1B1C1D1 является параллелограмм. На рёбрах A1B1, B1C1 и BC отмечены точки M, K и N соответственно, причем B1K : KC1 = 1 : 2, а AMKN - равнобедренная трапеция с основаниями 2 и 3. а) Докажите, что N - середина BC. б) Найдите площадь трапеции AMKN, если объем призмы ABCDA1B1C1D1 равен 12, а ее высота равна 2
Основанием прямой призмы ABCDA1B1C1D1 является параллелограмм. На рёбрах A1B1, B1C1 и BC отмечены точки M, K и N ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 13
Дана прямая призма ABCA1B1C1. ABC - равнобедренный треугольник с основанием AB. На AB отмечена точка P такая, что AP:PB = 3:1. Точка Q делит пополам ребро B1C1. Точка M делит пополам ребро BC. Через точку M проведена плоскость α, перпендикулярная PQ. а) Докажите, что прямая AB параллельна плоскости α. б) Найдите отношение, в котором плоскость α делит PQ, если AA1=5, AB=12, cos ∠ABC=3/5
Дана прямая призма ABCA1B1C1. ABC - равнобедренный треугольник с основанием AB ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 13 Восток
Точка M - середина ребра BC параллелепипеда ABCDA1B1C1D1. а) Докажите, что плоскость AMB1 параллельна прямой A1C. б) Найдите расстояние между прямой A1C и плоскостью AMB1, если параллелепипед прямоугольный, AB=12, AD=12 и AA1=6
Точка M - середина ребра BC параллелепипеда ABCDA1B1C1D1. а) Докажите, что плоскость AMB1 параллельна прямой A1C ! Тренировочная работа №2 по математике 10 класс Статград 11-05-2023 Вариант МА2200309 Задание 13
В правильной треугольной призме ABCA1B1C1 длина ребра основания равна 4, а длина бокового ребра равна 2. а) Докажите, что сечение призмы плоскостью α , проходящей через середину ребра АВ перпендикулярно отрезку, соединяющему середины рёбер ВС и А1В1, делит ребро АС в отношении 1:3, считая от вершины А. б) Найдите площадь сечения призмы плоскостью α
В правильной треугольной призме ABCA1B1C1 длина ребра основания равна 4, а длина бокового ребра равна 2 ! а) Докажите, что сечение призмы плоскостью α, проходящей через середину ребра АВ перпендикулярно отрезку # Статград Тренировочная работа №5 по математике 27-04-2023 11 класс Вариант МА2210509 Задание 13 # Два способа решения пункта б
Все боковые рёбра четырехугольной пирамиды SABCD равны AD - стороне основания ABCD. Стороны AB, BC и CD вдвое меньше стороны AD. a) Докажите, что высота пирамиды, опущенная из вершины S, проходит через середину AD. б) В каком отношении, считая от точки S, плоскость BNM делит высоту пирамиды, если N - середина SC, в точка M делит ребро SD в отношении 1 : 3, считая от точки S
Все боковые рёбра четырехугольной пирамиды SABCD равны AD - стороне основания ABCD ! Досрочный ЕГЭ 2023 по математике (резервный день) 19-04-2023 Задание 13
В основании пирамиды SABCD лежит параллелограмм ABCD. На боковых рёбрах SA, SC и SD отмечены точки K, L и M соответственно так, что SK:KA=SL:LC= 2 : 1 и SM=MD. a) Докажите, что плоскость KML содержит точку В. б) Найдите объём пирамиды BAKMD, если площадь параллелограмма ABCD равна 21, а высота пирамиды SABCD равна 12
В основании пирамиды SABCD лежит параллелограмм ABCD. На боковых рёбрах SA, SC и SD отмечены точки K, L и M соответственно ! Московский пробник 06.04.2023 Задание 13
Дан тетраэдр ABCD. Точки K, L, M и N лежат на ребрах AC, AD, DB и BC соответственно, так, что четырехугольник KLMN квадрат со стороной 2. AK:KC = 2 : 3. a) Докажите, что BM:MD = 2 : 3. б) Найдите расстояние от точки С до плоскости KLMN, если объем тетраэдра равен 25
Дан тетраэдр ABCD. Точки K, L, M и N лежат на ребрах AC, AD, DB и BC соответственно, так, что четырехугольник KLMN квадрат со стороной 2. AK:KC = 2 : 3 ! Досрочный ЕГЭ по математике 27-03-2023 Задание 13
В правильной четырехугольной пирамиде SABCD апофема равна стороне основания. Точка М - середина ребра SA. Найдите угол между плоскостью основания и плоскостью, проходящей через точки В, С и М. Ответ дайте в градусах
В правильной четырехугольной пирамиде SABCD апофема равна стороне основания ! Тренировочный вариант 420 от Ларина Задание 2
Основание прямой призмы ABCDA1B1C1D - параллелограмм АВСD, диагонали которого пересекаются в точке О. Известно, что АА1 : АВ : АD = 1 : 2 : √5. На ребре АА1 отметили такую точку М, что прямые ОМ и BD1 перпендикулярны. а) Докажите, что точка М - середина ребра АА1. б) Найдите расстояние от точки М до прямой B1D1, если АВ=2 , BD=3
Основание прямой призмы ABCDA1B1C1D - параллелограмм АВСD, диагонали которого пересекаются в точке О ! Тренировочная работа №1 по математике 10 класс Статград 08-02-2023 Вариант МА2200109 Задание 13
В правильной шестиугольной пирамиде SABCDEF сторона основания AB равна 2, а боковое ребро SA равно 8. Точка M - середина ребра AB. Плоскость альфа перпендикулярна плоскости ABC и содержит точки M и D. Прямая SC пересекает плоскость альфа в точке K. а) Докажите, что KM=KD. б) Найдите объём пирамиды CDKM
В правильной шестиугольной пирамиде SABCDEF сторона основания AB равна 2, а боковое ребро SA равно 8. Точка M - середина ребра AB ! 36 вариантов ФИПИ Ященко 2023 Вариант 21 Задание 13
В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами AB=5 и BC=sqrt23. Длины боковых рёбер пирамиды SA = 2sqrt15, SB=sqrt85, SD=sqrt83. а) Докажите, что SA - высота пирамиды SABCD. б) Найдите угол между прямыми SC и BD
В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами AB=5 и BC=sqrt23 ! Тренировочная работа по математике №2 СтатГрад 11 класс 13.12.2022 Задание 13 Вариант МА2210209 #Задача-аналог   2525  
Грань ABCD прямоугольного параллелепипеда ABCDA1B1C1D1 является вписанной в основание конуса, а сечением конуса плоскостью A1B1C1 является круг, вписанный в четырёхугольник A1B1C1D1; AB=a, AA1=sqrt2a. а) Высота конуса равна h. Докажите, что 4,5a < h < 5a. б) Найдите угол между плоскостями ABC и SD1C, где S - вершина конуса
Грань ABCD прямоугольного параллелепипеда ABCDA1B1C1D1 является вписанной в основание конуса, а сечением конуса плоскостью A1B1C1 является круг, вписанный в четырёхугольник A1B1C1D1 ! 36 вариантов ФИПИ Ященко 2023 Вариант 10 Задание 13
Грань ABCD куба ABCDA1B1C1D1 является вписанной в основание конуса, а сечением конуса плоскостью A1B1C1 является круг, вписанный в четырёхугольник A1B1C1D1. а) Высота конуса равна h, ребро куба равно a. Докажите, что 3a < h < 3,5a. б) Найдите угол между плоскостями ABC и SA1D, где S - вершина конуса
Грань ABCD куба ABCDA1B1C1D1 является вписанной в основание конуса, а сечением конуса плоскостью A1B1C1 является круг, вписанный в четырёхугольник A1B1C1D1 ! 36 вариантов ФИПИ Ященко 2023 Вариант 9 Задание 13
Загрузка...
Новое на сайте
8/27/2023 8:24:21 PM Демонстрационный вариант КИМ ЕГЭ 2024 года
 от ФИПИ профильный уровень по математике
Демонстрационный вариант КИМ ЕГЭ 2024 года от ФИПИ профильный уровень по математике
Новое задание на векторы первой части ЕГЭ 2024 года по математике профильног уровня. 🔥 Демонстрационный вариант контрольных измерительных материалов с решениями
К началу страницы