Теорема Менелая

Показаны 20 из 25 задач

?
В это поле можно ввести текст для поиска по вхождению полной подстроки:
Например:
пирам - будут найдены все условия задач, содержащие слова "пирамида", "Пирамиду","пирамиды" и тд.
треугольной пирамиды - будут найдены все условия задач, содержащие точную подстроку "треугольной пирамиды"
log - будут найдены все условия задач с логарифмами.
Надо иметь ввиду, что фильтрация будет происходить по текущему разделу.
Если необходимо найти более сложные строки, например, содержащие одновременно слова "Объём" "треугольной" "середины" "рёбер" нужно воспользоваться расширенным режимом поиска - сменив опцию "Содерж" на % из списка. Символ подстановки % соответствует любому количеству любых символов. Далее вводим текст %Объём%треуг%серед%бер% и примененяем фильтр, нажав ENTER (или жёлтую кнопку "Применить фильтр по условиям")
В правильной треугольной пирамиде SABC с основанием ABC точки D и E делят соответственно рёбра AC и SB так, что AD : DC = SE : EB = 1 : 3. На продолжении ребра SC за точку S отмечена точка O, прямые OD и OE пересекают рёбра AS и BC в точках P и F соответственно, причём CF=2FB. Докажите, что отрезки DE и PF пересекаются. б) Найдите отношение AP : AS
В правильной треугольной пирамиде SABC с основанием ABC точки D и E делят соответственно рёбра AC и SB так, что AD : DC = SE : EB = 1 : 3 ! ФИПИ школе 2025 ЕГЭ Ященко 36 вариантов профильный уровень Вариант 2 Задание 14
В правильной треугольной пирамиде SABC с основанием ABC точки D и E делят соответственно рёбра AC и SB так, что AD : DC = SE : EB = 1 : 2. На продолжении ребра SC за точку S отмечена точка O, прямые OD и OE пересекают рёбра AS и BC в точках P и F соответственно, причём BF=FC. Докажите, что отрезки DE и PF пересекаются. б) Найдите отношение AP : PS
В правильной треугольной пирамиде SABC с основанием ABC точки D и E делят соответственно рёбра AC и SB так, что AD : DC = SE : EB ! ФИПИ школе 2025 ЕГЭ Ященко 36 вариантов профильный уровень Вариант 1 Задание 14
Правильные треугольники ABC и ABM лежат в перпендикулярных плоскостях, AB=10sqrt2. Точка P - середина AM, а точка T делит отрезок BM так, что BT:TM = 3:1. a) Докажите, что плоскость CPT делит высоту MD треугольника AMB в отношении 1 : 2, считая от точки M. б) Вычислите объём пирамиды MPTC
Правильные треугольники ABC и ABM лежат в перпендикулярных плоскостях ! ЕГЭ по математике 05.07.2024 (день пересдачи - недостоверно) профильный уровень Задание 14 # Два способа решения пункта а (с теоремой Менелая и без)
В правильной треугольной пирамиде SABC с основанием АВС точки М и K - середины ребер АВ и SC соответственно, а точки N и L отмечены на ребрах SA и BC соответственно так, что отрезки МК и NL пересекаются, а 2AN = 3NS. а) Докажите, что прямые MN, KL и SB пересекаются в одной точке. б) Найдите отношение BL:LC
В правильной треугольной пирамиде SABC с основанием АВС точки М и K - середины ребер АВ и SC соответственно, а точки N и L отмечены на ребрах SA и BC соответственно так, что отрезки МК и NL пересекаются, а 2AN = 3NS ! ЕГЭ по математике 31.05.2024 профильный уровень Задание 14 # Два способа решения: с теоремой Менелая и без неё
Дан ромб ABCD. Прямая, перпендикулярная стороне AD, пересекает его диагональ AC в точке M, диагональ BD - в точке N, причем AM : MC = 1 : 2, BN : ND = 1 : 3. а) Докажите, что cos∠BAD = 0,2. б) Найдите площадь ромба, если MN=5
Дан ромб ABCD. Прямая, перпендикулярная стороне AD, пересекает его диагональ AC в точке M ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 16 # Два способа решения
Все боковые рёбра четырехугольной пирамиды SABCD равны AD - стороне основания ABCD. Стороны AB, BC и CD вдвое меньше стороны AD. a) Докажите, что высота пирамиды, опущенная из вершины S, проходит через середину AD. б) В каком отношении, считая от точки S, плоскость BNM делит высоту пирамиды, если N - середина SC, в точка M делит ребро SD в отношении 1 : 3, считая от точки S
Все боковые рёбра четырехугольной пирамиды SABCD равны AD - стороне основания ABCD ! Досрочный ЕГЭ 2023 по математике (резервный день) 19-04-2023 Задание 13
В основании пирамиды SABCD лежит параллелограмм ABCD. На боковых рёбрах SA, SC и SD отмечены точки K, L и M соответственно так, что SK:KA=SL:LC= 2 : 1 и SM=MD. a) Докажите, что плоскость KML содержит точку В. б) Найдите объём пирамиды BAKMD, если площадь параллелограмма ABCD равна 21, а высота пирамиды SABCD равна 12
В основании пирамиды SABCD лежит параллелограмм ABCD. На боковых рёбрах SA, SC и SD отмечены точки K, L и M соответственно ! Московский пробник 06.04.2023 Задание 13
SABCD - правильная четырёхугольная пирамида, точка M - середина ребра SA, точка N лежит на ребре SB, SN:NB=1:2. а) Докажите, что плоскость CMN параллельна прямой SD. б) Найдите площадь сечения пирамиды плоскостью CMN, если все рёбра пирамиды SABCD равны 6
Дана правильная пирамида SABCD, точка M - середина ребра SA, точка N лежит на ребре SB, SN:NB=1:2 ! ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 13 Москва, Центр # Решение через теорему Менелая
В правильной четырехугольной пирамиде MABCD через середины сторон АВ и AD параллельно боковому ребру АМ проведена плоскость. Сторона основания пирамиды равна 20, а боковое ребро ‐ 20sqrt2. А) Докажите, что сечение пирамиды этой плоскостью является пятиугольником с тремя прямыми углами. Б) Найдите площадь этого сечения
Докажите, что сечение пирамиды этой плоскостью является пятиугольником с тремя прямыми углами ! Тренировочный вариант 329 от Ларина Задание 14 # Решение - Елены Ильиничны Хажинской
В основании четырехугольной пирамиды SАВСD лежит параллелограмм АВСD c центром О. Точка N – середина ребра SC, точка L – середина ребра SA. а) Докажите, что плоскость BNL делит ребро SD в отношении 1 : 2, считая от вершины S. б) Найдите угол между плоскостями BNL и АВС, если пирамида правильная, SA = 8, а тангенс угла между боковым ребром и плоскостью основания пирамиды равен sqrt7/5
В основании четырехугольной пирамиды SАВСD лежит параллелограмм АВСD c центром О ! Тренировочный вариант 328 от Ларина Задание 14 # Решение - Елены Ильиничны Хажинской
На стороне АВ треугольника АВС взята точка Е, а на стороне ВС ‐ точка D так, что АЕ=2, CD=1. Прямые AD и СЕ пересекаются в точке О. Известно, что АВ=ВС=8, АС=6. а) Докажите, что АО:АD= 8:11 б) Найдите площадь четырехугольника BDOE
На стороне АВ треугольника АВС взята точка Е, а на стороне ВС ‐ точка D ! Тренировочный вариант 327 от Ларина Задание 16 # Решение - Елены Ильиничны Хажинской
В правильной четырехугольной пирамиде SABCD с вершиной S стороны основания равны 18, а боковые ребра 15. Точка R принадлежит ребру SB, причем SR:RB=2:1. А) Докажите, что плоскость, проходящая через точки С и R параллельно BD делит ребро SA пополам. Б) Найдите площадь сечения пирамиды этой плоскостью
В правильной четырехугольной пирамиде SABCD с вершиной S стороны основания равны 18 ! Тренировочный вариант 327 от Ларина Задание 14 #Два способа решения пункта a - с Менелаем и без него. 2 Решение - Елены Ильиничны Хажинской
Дана правильная четырехугольная пирамида SABCD. Плоскость alpha параллельна прямой AC, проходит через точку B и середину высоты пирамиды. A) Доказать, что плоскость alpha делит ребро SD в отношении 2 : 1, считая от точки D. Б) Найдите синус угла между плоскостью alpha и плоскостью ASC, если угол SAC равен 30^@
Доказать, что плоскость альфа делит ребро SD в отношении 2 : 1, считая от точки D ! Тренировочный вариант 324 от Ларина Задание 14 # Решение - Елены Ильиничны Хажинской
В треугольной пирамиде SABC точка E – середина ребра SA, точка F – середина ребра SB, О – точка пересечения медиан треугольника ABC А) Докажите, что плоскость CEF делит отрезок SO в отношении 3:2, считая от вершины S. Б) Найдите косинус угла между плоскостями CEF и EFT, если точка T – середина SC, а пирамида SABC правильная, площадь треугольника ABC равна 27sqrt3, SB=10
В треугольной пирамиде SABC точка E – середина ребра SA ! Тренировочный вариант 323 от Ларина Задание 14 # Решение - Елены Ильиничны Хажинской
В основании прямоугольного параллелепипеда ABCDA1B1C1D1 лежит квадрат ABCD со стороной 1, боковое ребро равно 2. Плоскость сечения проходит через середины ребер AD и CC1 параллельно диагонали B1D. а) Докажите, что плоскость сечения делит ребро BB1 в отношении 1:5, считая от точки B1 б) Найдите угол между плоскостью сечения и плоскостью основания параллелепипеда
ларин егэ по математике 2020 профильный уровень Вариант 290 Задание 14
В правильной шестиугольной пирамиде SABCDEF сторона основания ABCDEF равна 2, а боковое ребро 3. а) Докажите, что плоскость AFM, где M ‐ середина ребра SC, делит ребро SB в отношении 2:1, считая от вершины. б) Найдите площадь сечения пирамиды SABCDEF плоскостью AFM
ларин егэ по математике 2019 профильный уровень Вариант 264 Задание 14
В правильной треугольной пирамиде SABC точка Е – середина ребра АС, точка Р – середина ребра SВ. а) Докажите, что прямая РЕ делит высоту SН пирамиды в отношении 1:3. б) Найдите тангенс угла между прямой РЕ и плоскостью АSС, если известно, что АВАВ=6sqrt3, A=10
ларин егэ по математике 2019 профильный уровень Вариант 263 Задание 14
Апофема правильной пирамиды SABCD равна 2, а боковое ребро образует с основанием ABCD угол, равный arctgsqrt(3/2). Точки E, F, K выбраны соответственно на ребрах AB, AD и SC так, что (AE)/(EB)=(AF)/(FD)=(SK)/(KC)=1/2. а) Найдите площадь сечения пирамиды плоскостью EFK. б) Найдите угол между прямой SD и плоскостью EFK
ларин егэ по математике 2019 профильный уровень Вариант 256 Задание 14
Правильная треугольная призма ABCA_1B_1C_1 пересечена плоскостью, проходящей через середины ребер AB, A_1 C_1, B B_1. Сторона основания призмы равна 2, а высота призмы равна sqrt7/7. а) Найдите угол между плоскостью сечения и плоскостью основания призмы. б) Найдите площадь сечения
ларин егэ по математике 2019 профильный уровень Вариант 250 Задание 14
В основании четырехугольной пирамиды SABCD лежит квадрат со стороной 1. Ребро SA перпендикулярно плоскости основания и равно 2. Через вершину А параллельно диагонали BD проведено сечение, которое делит ребро SC в отношении 1:2, считая от вершины. а) Докажите, что плоскость сечения проходит через середину отрезка SO, где О- центр основания. б) Найдите площадь сечения
ларин егэ по математике 2019 профильный уровень Вариант 249 Задание 14
Загрузка...
Новое на сайте
11/6/2024 12:15:00 PM 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
10/24/2024 10:25:00 PM 30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
Решаем задачи из пособия 2025 года "Математика 30 вариантов ЕГЭ Базовый уровень ФИПИ школе Ященко"
10/24/2024 8:25:00 PM Математика 36 вариантов ОГЭ 2025 ФИПИ
Математика 36 вариантов ОГЭ 2025 ФИПИ
Решаем задания типовых экзаменационных вариантов пособия 36 вариантов ОГЭ 2025 ФИПИ школе под редакцией Ященко И В
К началу страницы