Скрещивающиеся прямые

Показаны 20 из 59 задач

?
В это поле можно ввести текст для поиска по вхождению полной подстроки:
Например:
пирам - будут найдены все условия задач, содержащие слова "пирамида", "Пирамиду","пирамиды" и тд.
треугольной пирамиды - будут найдены все условия задач, содержащие точную подстроку "треугольной пирамиды"
log - будут найдены все условия задач с логарифмами.
Надо иметь ввиду, что фильтрация будет происходить по текущему разделу.
Если необходимо найти более сложные строки, например, содержащие одновременно слова "Объём" "треугольной" "середины" "рёбер" нужно воспользоваться расширенным режимом поиска - сменив опцию "Содерж" на % из списка. Символ подстановки % соответствует любому количеству любых символов. Далее вводим текст %Объём%треуг%серед%бер% и примененяем фильтр, нажав ENTER (или жёлтую кнопку "Применить фильтр по условиям")
В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 все рёбра равны 30. Найдите тангенс угла между прямыми C1F и AA1
В правильной шестиугольной призме найдите тангенс угла между прямыми C1F и AA1 ! СтатГрад Тренировочная работа № 3 по математике 11 класс 14-02-2024 Задание 3
Ребро AD пирамиды DABC равно 6, а все остальные рёбра равны 5. а) Докажите, что прямые AD и BC перпендикулярны. б) Найдите расстояние между прямыми AD и BC
Ребро AD пирамиды DABC равно 6, а все остальные рёбра равны 5 ! Найдите расстояние между AD и BC # Московский пробник 14-12-2023 Задание 14
В правильной треугольной призме ABCA1B1C1, все рёбра которой равны 2, найдите угол между прямыми BB1 и AC1. Ответ дайте в градусах
В правильной треугольной призме ABCA1B1C1, все рёбра которой равны 2, найдите угол между прямыми BB1 и AC1 ! 36 вариантов ФИПИ Ященко 2023 Вариант 22 Задание 2
Сторона основания правильной четырёхугольной пирамиды SABCD относится к боковому ребру как 1 : sqrt2. Через вершину D проведена плоскость α, перпендикулярная боковому ребру SB и пересекающая его в точке M. а) Докажите, что M - середина SB. б) Найдите расстояние между прямыми AC и DM, если высота пирамиды равна 6sqrt3
Сторона основания правильной четырёхугольной пирамиды SABCD относится к боковому ребру как ! 36 вариантов ФИПИ Ященко 2023 Вариант 7 Задание 13
В прямоугольном параллелепипеде ABCDA1B1C1D1 на диагонали BD1 отмечена точка N так, что BN:ND1=1:2. Точка O - середина отрезка CB1. а) Докажите, что прямая NO проходит через точку A. б) Найдите объём параллелепипеда ABCDA1B1C1D1, если длина отрезка NO равна расстоянию между прямыми BD1 и CB1 и равна sqrt2
В прямоугольном параллелепипеде ABCDA1B1C1D1 на диагонали BD1 отмечена точка N так, что BN:ND1=1:2 ! ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 13 Москва, Центр, Санкт-Петербург
В кубе ABCDA1B1C1D1 отмечены середины M и N отрезков AB и AD соответственно. а) Докажите, что прямые B1N и CM перпендикулярны. б) Найдите расстояние между этими прямыми, если B1N=3sqrt5
В кубе ABCDA1B1C1D1 отмечены середины M и N отрезков AB и AD соответственно ! ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 13 Москва
В правильной шестиугольной пирамиде SABCDEF с вершиной S в грани SAB проведена высота SH, а в грани SDE проведена высота SK. а) Докажите, что прямая CF перпендикулярна плоскости SHK. б) Найдите угол между прямыми BE и SH, если SA=13, а AB=10
б) Найдите угол между прямыми BE и SH, если SA=13, а AB=10 ! Тренировочная работа №2 по математике 11 класс Статград 15-12-2021 Задание 13 Варианты МА2110209, МА2110211
В правильной шестиугольной пирамиде SABCDEF с вершиной S в грани SAB проведена высота SH, а в грани SDE проведена высота SK. а) Докажите, что прямая CF перпендикулярна плоскости SHK. б) Найдите угол между прямыми AD и SH, если SA=25, а AB=14
В правильной шестиугольной пирамиде SABCDEF с вершиной S в грани SAB проведена высота SH ! Тренировочная работа №2 по математике 11 класс Статград 15-12-2021 Задание 13 Варианты МА2110210, МА2110212
Две правильные четырехугольные пирамиды EABCD и FABCD имеют общее основание ABCD и расположены по разные стороны от него. Точки M и N – середины ребер ВС и АВ соответственно. Все ребра пирамид равны. а) Докажите, что угол между прямыми АЕ и BF равен 60 градусов. б) Найдите угол между прямыми EM и FN
Две правильные четырехугольные пирамиды EABCD и FABCD имеют общее основание ABCD и расположены по разные стороны от него ! Тренировочный вариант 360 от Ларина Задание 13 (14) # Два способа решения: 1) Векторный способ 2) Решение Елены Ильиничны Хажинской
Основание пирамиды SABC - равносторонний треугольник АВС. Боковое ребро SA перпендикулярно плоскости основания, точки М и N - середины рёбер ВС и АВ соответственно, причём SN=AM. a) Докажите, что угол между прямыми AM и SN равен 60 гр. б) Найдите расстояние между этими прямыми, если BC=6
Найдите расстояние между этими прямыми, если BC=6 ! 36 вариантов ФИПИ Ященко 2022 Вариант 30 Задание 13 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 20 Задание 14 # Векторный способ # Задача-Аналог   2749  
Основание пирамиды SABC - равносторонний треугольник АВС. Боковое ребро SA перпендикулярно плоскости основания, точки М и N - середины рёбер ВС и АВ соответственно, причём SN=AM. a) Докажите, что угол между прямыми AM и SN равен 60 гр. б) Найдите расстояние между этими прямыми, если BC=3sqrt2
Основание пирамиды SABC - равносторонний треугольник АВС. Боковое ребро SA перпендикулярно ! 36 вариантов ФИПИ Ященко 2022 Вариант 29 Задание 13 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 19 Задание 14 # Векторный способ # Задача-Аналог   2756  
Основанием пирамиды TABCD является прямоугольник ABCD со сторонами AB=26 и BC=18. Все боковые рёбра пирамиды равны 10sqrt5. На рёбрах AB и CD отмечены соответственно точки N и M так, что BN=DN=12. Через точки N и M проведена плоскость alpha, перпендикулярная ребру TA. а) Докажите, что плоскость альфа проходит через точку K - середину ребра TA. б) Найдите расстояние между прямыми TС и KN
Основанием пирамиды TABCD является прямоугольник ABCD со сторонами ! 36 вариантов ФИПИ Ященко 2022 Вариант 28 Задание 13 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 18 Задание 14
В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки A, B и C, а на окружности другого основания - точка C1, причём CC1 - образующая цилиндра, а AC - диаметр основания. Известно, что /_ACB=30^@, AB=sqrt2, CC1=4. а) Докажите, что угол между прямыми AC1 и BC равен 60^@. б) Найдите площадь боковой поверхности цилиндра
Найдите площадь боковой поверхности цилиндра ! ! 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 28 Задание 16 # 36 вариантов ФИПИ Ященко 2019 ВАРИАНТ 8 Задание 14 # Задача-аналог   1296  
В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки A, B и C, а на окружности другого основания - точка C1, причём CC1 - образующая цилиндра, а AC - диаметр основания. Известно, что /_ACB=45^@, AB=CC1=root(4)(8). а) Докажите, что угол между прямыми BC1 и AC равен 60^@. б) Найдите площадь боковой поверхности цилиндра
В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки A, B и C ! 36 вариантов ФИПИ Ященко 2019 ВАРИАНТ 4 Задание 14 # Задача-аналог   1328  
В правильном тетраэдре ABC точка H - центр грани ABC, а точка M - середина ребра CD. а) Докажите, что прямые AB и CD перпендикулярны. б) Найдите угол между прямыми DH и BM.
Резервный день егэ 2018 математика профиль 25 июня Задание 14 вариант 992! Ответы 25-06-2018 Задача 14 Вариант 992
В кубе ABCDA_1 B_1 C_1 D_1 все рёбра равны 6. а) Докажите, что угол между прямыми AC и B C_1 равен 60^@. б) Найдите расстояние между прямыми AC и B C_1
Резервный день ЕГЭ математика профиль 25-06-2018 Задание 14 (тип 14.3) вариант 751!Основная волна 1 июня Задача 14 Вариант 991 # Два способа решения, Второй - векторным способом
В правильной треугольной призме ABCA_1B_1C_1 все рёбра равны 2. Точка M - середина ребра A A_1. а) Докажите, что прямые MB и B_1 C перпендикулярны. б) Найдите расстояние между прямыми MB и B_1 C
Досрочный ЕГЭ по математике резервный день 11.04.2018 Задание 14! Задача на правильную треугольную призму # Два способа решения
На окружности основания конуса с вершиной S отмечены точки A, B, C так, что AB=BC. Медиана AM треугольника ASC пересекает высоту конуса. а) Точка N - середина отрезка AC. Докажите, что угол MNB - прямой. б) Найдите угол между прямыми AM и SB, если AS=2 AC=sqrt(6)
Тренировочная работа 06.03.2018 СтатГрад 11 класс Задание 14
В правильной четырёхугольной пирамиде SABCD с вершиной S сторона основания равна 8. Точка L - середина ребра SC. Тангенс угла между прямыми BL и SA равен 2sqrt(2/5). a) Пусть O - центр основания пирамиды. Докажите, что прямые BO и OL перпендикулярны. б) Найдите площадь поверхности пирамиды
математика 50 вариантов ЕГЭ 2020 профильный уровень Ященко Вариант 19 Задание 14 ! Математика 50 вариантов ЕГЭ 2018 Ященко Тренировочная работа 19 Часть 2 Задание 14 # Аналог для Ященко 36 вариантов профильный уровень ЕГЭ 2018 Тренировочная работа 13 Задача 14 # Аналоги   819    2  
а) Докажите, что в правильной треугольной призме ABCA_1B_1C_1 прямая, проходящая через середины отрезков AA1 и BC1, перпендикулярна этим отрезкам. б) В правильной треугольной призме ABCA_1B_1C_1, все рёбра которой равны 1, найдите расстояние между прямыми AA1 и BC1
Ященко ЕГЭ 2017 30 вариантов Вариант 24 задача 14
Загрузка...
Новое на сайте
11/6/2024 12:15:00 PM 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
10/24/2024 10:25:00 PM 30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
Решаем задачи из пособия 2025 года "Математика 30 вариантов ЕГЭ Базовый уровень ФИПИ школе Ященко"
10/24/2024 8:25:00 PM Математика 36 вариантов ОГЭ 2025 ФИПИ
Математика 36 вариантов ОГЭ 2025 ФИПИ
Решаем задания типовых экзаменационных вариантов пособия 36 вариантов ОГЭ 2025 ФИПИ школе под редакцией Ященко И В
К началу страницы