276 тренировочный вариант от Ларина

Показаны 6 из 6 задач

?
В это поле можно ввести текст для поиска по вхождению полной подстроки:
Например:
пирам - будут найдены все условия задач, содержащие слова "пирамида", "Пирамиду","пирамиды" и тд.
треугольной пирамиды - будут найдены все условия задач, содержащие точную подстроку "треугольной пирамиды"
log - будут найдены все условия задач с логарифмами.
Надо иметь ввиду, что фильтрация будет происходить по текущему разделу.
Если необходимо найти более сложные строки, например, содержащие одновременно слова "Объём" "треугольной" "середины" "рёбер" нужно воспользоваться расширенным режимом поиска - сменив опцию "Содерж" на % из списка. Символ подстановки % соответствует любому количеству любых символов. Далее вводим текст %Объём%треуг%серед%бер% и примененяем фильтр, нажав ENTER (или жёлтую кнопку "Применить фильтр по условиям")
Задуман набор последовательных (идущих подряд) натуральных чисел, сумма которых больше 231 и меньше 245. а) Может ли в наборе быть 13 чисел? б) Может ли в наборе быть 14 чисел? в) Какое наибольшее количество чисел, которые удовлетворяют заданному условию, может быть в наборе?
Задуман набор последовательных (идущих подряд) натуральных чисел, сумма которых больше ! ларин егэ по математике 2019 профильный уровень Вариант 276 Задание 19
Диагонали трапеции ABCD с основаниями AD и BC пересекаются в точке M. Окружность, описанная около треугольника CDM, пересекает отрезок AD в точке N и касается прямой BN. а) Докажите, что треугольники BNC и CDN подобны. б) Найдите AD, если CD=24, /_BCD=/_DMA, а радиус окружности равен 13
ларин егэ по математике 2019 профильный уровень Вариант 276 Задание 16
В правильном тетраэдре ABCD точка К – центр грани ABD, точка M – центр грани ACD. а) Докажите, что прямые BC и КМ параллельны. б) Найдите угол между прямой КМ и плоскостью ABD
ларин егэ по математике 2020 Вариант 291 Задание 14 ! ларин егэ по математике 2019 профильный уровень Вариант 276 Задание 14
Решить неравенство log_{2}^2((x+1)/(2x-1))+log_{2}((2x-1)/(x+1))<=0.
Тренировочный вариант 276 от Ларина Задание 15
а) Решите уравнение sqrt(1+cos(4x))*sin(x)=2sin(pi/4) б) Укажите корни этого уравнения, принадлежащие отрезку[-(7pi)/2; -pi].
Тренировочный вариант 276 от Ларина Задание 13
Найдите все значения параметра a, при каждом из которых уравнение cos^2(x)-a^2*cos(x)+(a^2-a+12)*(a-12)=0 имеет ровно одно решение на промежутке (-pi/3; pi/2].
Тренировочный вариант 276 от Ларина Задание 18 # Задача-Аналог   2013  
Загрузка...
Новое на сайте
6/6/2024 6:14:00 PM ОГЭ по математике (основная волна) 06-06-2024 🔥
ОГЭ по математике (основная волна) 06-06-2024 🔥
Разбор заданий вариантов, решения и ответы
5/31/2024 8:42:00 PM ЕГЭ по математике (основная волна) 31.05.2024 🔥
ЕГЭ по математике (основная волна) 31.05.2024 🔥
Начинаем разбор заданий ЕГЭ по математике профильного уровня. Варианты Востока, Запада, Центра (обновляется...)
К началу страницы