Точка O1 – центр вписанной окружности равнобедренного треугольника ABC, а O2 – центр вневписанной окружности

Тренировочный вариант 323 от Ларина Задание 16 № задачи в базе 2482


Точка O1 – центр вписанной окружности равнобедренного треугольника ABC, а O2 – центр вневписанной окружности, касающейся основания BC. А) Докажите, что расстояние от середины отрезка O1O2 до точки С вдвое меньше O1O2. Б) Известно, что радиус первой окружности в пять раз меньше радиуса второй. В каком отношении точка касания первой окружности с боковой стороной треугольника делит эту сторону?

Ответ: 1:2
Ключевые слова:

Примечание:
Точка O1 – центр вписанной окружности равнобедренного треугольника ABC, а O2 – центр вневписанной окружности ! Тренировочный вариант 323 от Ларина Задание 16 # Решение - Елены Ильиничны Хажинской


🔥 Оценки экспертов решений задания 17 ЕГЭ по математике профильного уровня. Сканы реальных работ прошлых лет


Новое на сайте
11/6/2024 12:15:00 PM 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
10/24/2024 10:25:00 PM 30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
Решаем задачи из пособия 2025 года "Математика 30 вариантов ЕГЭ Базовый уровень ФИПИ школе Ященко"
10/24/2024 8:25:00 PM Математика 36 вариантов ОГЭ 2025 ФИПИ
Математика 36 вариантов ОГЭ 2025 ФИПИ
Решаем задания типовых экзаменационных вариантов пособия 36 вариантов ОГЭ 2025 ФИПИ школе под редакцией Ященко И В
К началу страницы