Решите неравенство log8 (x3- 3x2+3x-1) >= log2 (x2-1)-5

ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 14 № задачи в базе 3790


Решите неравенство log_{8}(x^3-3x^2+3x-1) >= log_{2}(x^2-1)-5

Ключевые слова:

Примечание:
Решите неравенство log8 (x3- 3x2+3x-1) >= log2 (x2-1)-5 ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 14





🔥 Оценки экспертов решений задания 15 с неравенствами ЕГЭ по математике профильного уровня. Сканы реальных работ прошлых лет


Новое на сайте
23/04/2025 20:25 СтатГрад Тренировочная работа № 5 по математике 11 класс 23-04-2025
СтатГрад Тренировочная работа № 5 по математике 11 класс 23-04-2025
Разбор заданий вариантов МА2410509, МА2410511 профильного уровня, ответы и подробные решения
28/03/2025 21:00 Досрочный ЕГЭ по математике 2025
Досрочный ЕГЭ по математике 2025
Задания вариантов ЕГЭ профильного уровня досрочной волны 28 марта 2025 года с решениями
16/03/2025 09:05 Тренажёр первой части ЕГЭ
Тренажёр первой части ЕГЭ
Решайте на время задания первой части ЕГЭ профильного уровня по математике NEW
К началу страницы