График задачи Решите неравенство log3 (3-x) - log3 (x+2) / log^2 3 x^2 +log3 x^4+1 >= 0

Решите неравенство (log_{3}(3-x)-log_{3}(x+2)) / ((log_{3}(x^2))^2+log_{3}(x^4)+1) >=0

Ответ: (-2; -1/sqrt3) uu (-1/sqrt3; 0) uu (0; 1/2]
Примечание:
Решите неравенство log3 (3-x) - log3 (x+2) / log^2 3 x^2 +log3 x^4+1 >= 0 ! ЕГЭ 2023 по математике (основная волна) 01-06-2023 Задание 14

Аналитическое Решение


Ключевые слова:
Новое на сайте
27/05/2025 20:25 ЕГЭ по математике основная волна 2025 🔥 (обновляется...)
ЕГЭ по математике основная волна 2025 🔥 (обновляется...)
Разбор вариантов ЕГЭ по математике профильного уровня 26 и 27 мая 2025 года Восток, Центр, Запад, решения и ответы
К началу страницы