В треугольной пирамиде SABC точка E – середина ребра SA

Тренировочный вариант 323 от Ларина Задание 14 № задачи в базе 2483


В треугольной пирамиде SABC точка E – середина ребра SA, точка F – середина ребра SB, О – точка пересечения медиан треугольника ABC А) Докажите, что плоскость CEF делит отрезок SO в отношении 3:2, считая от вершины S. Б) Найдите косинус угла между плоскостями CEF и EFT, если точка T – середина SC, а пирамида SABC правильная, площадь треугольника ABC равна 27sqrt3, SB=10

Ответ: 15/17
Ключевые слова:

Примечание:
В треугольной пирамиде SABC точка E – середина ребра SA ! Тренировочный вариант 323 от Ларина Задание 14 # Решение - Елены Ильиничны Хажинской


🔥 Оценки экспертов решений задания 14 на стереометрию ЕГЭ по математике профильного уровня. Сканы реальных работ прошлых лет


Новое на сайте
11/6/2024 12:15:00 PM 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
10/24/2024 10:25:00 PM 30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
Решаем задачи из пособия 2025 года "Математика 30 вариантов ЕГЭ Базовый уровень ФИПИ школе Ященко"
10/24/2024 8:25:00 PM Математика 36 вариантов ОГЭ 2025 ФИПИ
Математика 36 вариантов ОГЭ 2025 ФИПИ
Решаем задания типовых экзаменационных вариантов пособия 36 вариантов ОГЭ 2025 ФИПИ школе под редакцией Ященко И В
К началу страницы