В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки A, B и C

36 вариантов ФИПИ Ященко 2019 ВАРИАНТ 4 Задание 14 № задачи в базе 1296


В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки A, B и C, а на окружности другого основания - точка C1, причём CC1 - образующая цилиндра, а AC - диаметр основания. Известно, что /_ACB=45^@, AB=CC1=root(4)(8). а) Докажите, что угол между прямыми BC1 и AC равен 60^@. б) Найдите площадь боковой поверхности цилиндра

Ответ: 4pi

Ключевые слова:
Примечание:
В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки A, B и C ! 36 вариантов ФИПИ Ященко 2019 ВАРИАНТ 4 Задание 14 # Задача-аналог   1328  


🔥 Оценки экспертов решений задания 14 на стереометрию ЕГЭ по математике профильного уровня. Сканы реальных работ прошлых лет


Новое на сайте
6/6/2024 6:14:00 PM ОГЭ по математике (основная волна) 06-06-2024 🔥
ОГЭ по математике (основная волна) 06-06-2024 🔥
Разбор заданий вариантов, решения и ответы
5/31/2024 8:42:00 PM ЕГЭ по математике (основная волна) 31.05.2024 🔥
ЕГЭ по математике (основная волна) 31.05.2024 🔥
Начинаем разбор заданий ЕГЭ по математике профильного уровня. Варианты Востока, Запада, Центра (обновляется...)
К началу страницы