Диагонали AC и BD четырёхугольника ABCD, вписанного в окружность, пересекаются в точке P, причём BC=CD

Тренировочная работа №2 по математике 10 класс Статград 11-05-2023 Вариант МА2200309 Задание 16 № задачи в базе 3762


Диагонали AC и BD четырёхугольника ABCD, вписанного в окружность, пересекаются в точке P, причём BC=CD. а) Докажите, что AB : BC = AP : PD. б) Найдите площадь треугольника COD, где O - центр окружности, вписанной в треугольник ABD, если дополнительно известно, что BD - диаметр описанной около четырёхугольника ABCD окружности, AB=6, а BC=6sqrt2

Ответ: 18sqrt3
Ключевые слова:

Примечание:
Диагонали AC и BD четырёхугольника ABCD, вписанного в окружность, пересекаются в точке P, причём BC=CD ! Тренировочная работа №2 по математике 10 класс Статград 11-05-2023 Вариант МА2200309 Задание 16


🔥 Оценки экспертов решений задания 17 ЕГЭ по математике профильного уровня. Сканы реальных работ прошлых лет


Новое на сайте
11/6/2024 12:15:00 PM 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
10/24/2024 10:25:00 PM 30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
Решаем задачи из пособия 2025 года "Математика 30 вариантов ЕГЭ Базовый уровень ФИПИ школе Ященко"
10/24/2024 8:25:00 PM Математика 36 вариантов ОГЭ 2025 ФИПИ
Математика 36 вариантов ОГЭ 2025 ФИПИ
Решаем задания типовых экзаменационных вариантов пособия 36 вариантов ОГЭ 2025 ФИПИ школе под редакцией Ященко И В
К началу страницы