На прилавке случайным образом расставлены тарелки - все попарно разных цветов, среди этих тарелок есть тарелки синего, зелёного и белого цветов
Тренировочный вариант 450 от Ларина Задание 4 № задачи в базе 4031
На прилавке случайным образом расставлены тарелки - все попарно разных цветов, среди этих тарелок есть тарелки синего, зелёного и белого цветов. Какова вероятность того, что тарелка белого цвета поставлена после тарелки синего цвета и перед тарелкой зелёного цвета? Результат округлите до сотых
Примечание:
На прилавке случайным образом расставлены тарелки - все попарно разных цветов, среди этих тарелок есть тарелки синего, зелёного и белого цветов ! Тренировочный вариант 450 от Ларина Задание 4
Решение:
Всего n способов разместить три тарелки на три места 3! :
$ n = 1 \cdot 2 \cdot 3 = 6$
Число благоприятных исходов m всего один:
СИНЯЯ - БЕЛАЯ - ЗЕЛЁНАЯ
$ m = 1 $
Воспользуемся классической формулой определения вероятности случайного события:
$ P = \frac{m}{n}$
$ P = \frac{1}{6} = 0,16666...$
Округляем до сотых
$ P =0,17 $
ОТВЕТ: 0,17