Дан конус с вершиной M, радиус основания которого 4sqrt3. В основание этого конуса вписан четырёхугольник ABCD так, что углы BMA, CMB, DMC, AMD по 60^@ каждый. . Точка F выбрана на дуге BC окружности основания конуса, не содержащей точку A так, что объём пирамиды MABFCD наибольший. Найти расстояние от точки F до плоскости (MAB)

№ задачи в базе 383


Дан конус с вершиной M, радиус основания которого 4sqrt3. В основание этого конуса вписан четырёхугольник ABCD так, что углы BMA, CMB, DMC, AMD по 60^@ каждый. . Точка F выбрана на дуге BC окружности основания конуса, не содержащей точку A так, что объём пирамиды MABFCD наибольший. Найти расстояние от точки F до плоскости (MAB)

Ответ: 4
Ключевые слова:

Примечание:
#Приведены два способа см Указание 383 Аналогичные задачи:   384    385    386    387    389    390    391    392