Дан конус с вершиной M, радиус основания которого 6sqrt6. На окружности его основания выбраны точки A, B, C так, что углы BMA, AMC, CMB равны alpha каждый, причём sin(alpha/2)=sqrt(5/7). Точка F выбрана на дуге BC окружности основания конуса, не содержащей точку A так, что объём пирамиды MABFC наибольший. Найти расстояние от точки F до плоскости (MAB)
№ задачи в базе 383
Ответ: 6
Ключевые слова:
Примечание:
#см Указание 383 Аналогичные задачи: 384 385 387 388 389 390 391 392