На диагонали параллелограмма взяли точку, отличную от её середины

Тренировочный вариант 359 от Ларина Задание 16 № задачи в базе 2957


На диагонали параллелограмма взяли точку, отличную от её середины. Из неё на все стороны параллелограмма (или их продолжения) опустили перпендикуляры. а) Докажите, что четырёхугольник, образованный основаниями этих перпендикуляров, является трапецией. б) Найдите площадь полученной трапеции, если площадь параллелограмма равна 16, а один из его углов равен 60^@

Ключевые слова:

Примечание:
На диагонали параллелограмма взяли точку, отличную от её середины ! Тренировочный вариант 359 от Ларина Задание 16 # Решение - Елены Ильиничны Хажинской





🔥 Оценки экспертов решений задания 17 ЕГЭ по математике профильного уровня. Сканы реальных работ прошлых лет


Новое на сайте
11/07/2025 19:30 ДВИ в МГУ 2025 по математике 🔥 (обновляется...)
ДВИ в МГУ 2025 по математике 🔥 (обновляется...)
Решения основных потоков дополнительных вступительных испытаний в МГУ 2025 по математике +пробники и решения вариантов прошлых лет
05/06/2025 19:00 Эксперты ЕГЭ по математике о проверке основной волны 2025
Эксперты ЕГЭ по математике о проверке основной волны 2025
Комментарии экспертов по итогам проверки ЕГЭ по математике профильного уровня.
27/05/2025 20:25 ЕГЭ по математике основная волна 2025
ЕГЭ по математике основная волна 2025
Разбор вариантов ЕГЭ по математике профильного уровня 26 и 27 мая 2025 года Восток, Центр, Запад, решения и ответы
К началу страницы