На диагонали параллелограмма взяли точку, отличную от её середины

Тренировочный вариант 359 от Ларина Задание 16 № задачи в базе 2957


На диагонали параллелограмма взяли точку, отличную от её середины. Из неё на все стороны параллелограмма (или их продолжения) опустили перпендикуляры. а) Докажите, что четырёхугольник, образованный основаниями этих перпендикуляров, является трапецией. б) Найдите площадь полученной трапеции, если площадь параллелограмма равна 16, а один из его углов равен 60^@

Ключевые слова:

Примечание:
На диагонали параллелограмма взяли точку, отличную от её середины ! Тренировочный вариант 359 от Ларина Задание 16 # Решение - Елены Ильиничны Хажинской





🔥 Оценки экспертов решений задания 17 ЕГЭ по математике профильного уровня. Сканы реальных работ прошлых лет


Новое на сайте
27/05/2025 20:25 ЕГЭ по математике основная волна 2025 🔥 (обновляется...)
ЕГЭ по математике основная волна 2025 🔥 (обновляется...)
Разбор вариантов ЕГЭ по математике профильного уровня 26 и 27 мая 2025 года Восток, Центр, Запад, решения и ответы
К началу страницы