В трапеции ABCD точки M и N середины оснований BC и AD соответственно

Доказать, что трапеция ABCD - равнобедренная № задачи в базе 262


В трапеции ABCD точки M и N середины оснований BC и AD соответственно. Отрезок [MN] разбивает данную трапецию на две, в каждую из которых можно вписать окружность радиусом 3. BC=10. Доказать, что трапеция ABCD - равнобедренная. Вычислить радиус окружности, касающейся AB, AD и вписанной в трапецию ABMN окружности

Ответ: (17-4sqrt13)/3

Ключевые слова:
Примечание:
В трапеции ABCD точки M и N середины оснований BC и AD соответственно ! Доказать, что трапеция ABCD - равнобедренная #Аналог   3282    937  

maybe

🔥 Оценки экспертов решений задания 17 ЕГЭ по математике профильного уровня. Сканы реальных работ прошлых лет


Новое на сайте
5/16/2024 6:24:21 PM Тренировочная работа №2 по математике 10 класс Статград 16-05-2024
Тренировочная работа №2 по математике 10 класс Статград 16-05-2024
Разбор вариантов профильного уровня, ответы и подробные решения; Вариант МА2300309
5/6/2024 5:25:00 PM Пробный ОГЭ по математике 9 класс Статград 06-05-2024
Пробный ОГЭ по математике 9 класс Статград 06-05-2024
Тренировочная работа №5 - Разбор вариантов, ответы и подробные решения
К началу страницы