Три окружности, из которых две - равных радиусов, касаются в точках A, B, C

Найти радиус окружности, вписанной в четырёхугольник ABCO № задачи в базе 503


Три окружности, из которых две - равных радиусов, касаются в точках A, B, C. Доказать, что треугольник ABC - равнобедренный. Найти радиус окружности, вписанной в четырёхугольник ABCO, где O - центр меньшей окружности, r_1=r_2=6, r_3=4

Ключевые слова:

Примечание:
Три окружности, из которых две - равных радиусов, касаются в точках A, B, C ! Найти радиус окружности, вписанной в четырёхугольник ABCO





🔥 Оценки экспертов решений задания 17 ЕГЭ по математике профильного уровня. Сканы реальных работ прошлых лет


Новое на сайте
11/07/2025 19:30 ДВИ в МГУ 2025 по математике 🔥 (обновляется...)
ДВИ в МГУ 2025 по математике 🔥 (обновляется...)
Решения основных потоков дополнительных вступительных испытаний в МГУ 2025 по математике +пробники и решения вариантов прошлых лет
05/06/2025 19:00 Эксперты ЕГЭ по математике о проверке основной волны 2025
Эксперты ЕГЭ по математике о проверке основной волны 2025
Комментарии экспертов по итогам проверки ЕГЭ по математике профильного уровня.
27/05/2025 20:25 ЕГЭ по математике основная волна 2025
ЕГЭ по математике основная волна 2025
Разбор вариантов ЕГЭ по математике профильного уровня 26 и 27 мая 2025 года Восток, Центр, Запад, решения и ответы
К началу страницы