Пусть S(n) и K(n) обозначают сумму всех цифр и сумму квадратов всех цифр натурального числа

Статград - Тренировочная работа №1 для 10 класса 28.01.2021 Профильный уровень Вариант МА2000309 Задание 19 № задачи в базе 2690


Пусть S(n) и K(n) обозначают сумму всех цифр и сумму квадратов всех цифр натурального числа соответственно. а) Существует ли такое натуральное число n, что K(n) = 2S(n) + 7 ? б) Существует ли такое натуральное число n, что K(n) = 3S(n) + 7 ? в) Для какого наименьшего натурального числа n выполнено равенство K(n) = 8S(n) + 65?

Ключевые слова:

Примечание:
Пусть S(n) и K(n) обозначают сумму всех цифр и сумму квадратов всех цифр натурального числа ! Статград - Тренировочная работа №1 для 10 класса 28.01.2021 Профильный уровень Вариант МА2000309 Задание 19





🔥 Оценки экспертов решений задания 19 ЕГЭ по математике профильного уровня. Сканы реальных работ прошлых лет


Новое на сайте
27/05/2025 20:25 ЕГЭ по математике основная волна 2025 🔥 (обновляется...)
ЕГЭ по математике основная волна 2025 🔥 (обновляется...)
Разбор вариантов ЕГЭ по математике профильного уровня 26 и 27 мая 2025 года Восток, Центр, Запад, решения и ответы
К началу страницы