Дан прямой круговой конус с вершиной M

Тренировочный вариант 325 от Ларина Задание 14 № задачи в базе 2529


Дан прямой круговой конус с вершиной M. Осевое сечение конуса – треугольник с углом 120^@ при вершине M. Образующая конуса равна 2sqrt3. Через точку M проведено сечение конуса, перпендикулярное одной из образующих. А) Докажите, что получившийся в сечении треугольник ‐ тупоугольный. Б) Найдите расстояние от центра О основания конуса до плоскости сечения

Ответ: sqrt3/2
Ключевые слова:

Примечание:
Дан прямой круговой конус с вершиной M ! Тренировочный вариант 325 от Ларина Задание 14 # Решение - Елены Ильиничны Хажинской # АналогрешенияЗаданиядлявариантаcolor{blue}{text(Аналог решения Задания 13 для варианта 363)}


🔥 Оценки экспертов решений задания 14 на стереометрию ЕГЭ по математике профильного уровня. Сканы реальных работ прошлых лет


Новое на сайте
11/6/2024 12:15:00 PM 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
10/24/2024 10:25:00 PM 30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
Решаем задачи из пособия 2025 года "Математика 30 вариантов ЕГЭ Базовый уровень ФИПИ школе Ященко"
10/24/2024 8:25:00 PM Математика 36 вариантов ОГЭ 2025 ФИПИ
Математика 36 вариантов ОГЭ 2025 ФИПИ
Решаем задания типовых экзаменационных вариантов пособия 36 вариантов ОГЭ 2025 ФИПИ школе под редакцией Ященко И В
К началу страницы