График задачи Найти все значения параметра a, при каждом из которых система уравнений {(log_{5}(16 -y^2) =log_{5}(16 -a^2x^2)), (x^2+ y^2= 6x+ 4y):} имеет ровно два различных решения

Найти все значения параметра a, при каждом из которых система уравнений {(log_{5}(16-y^2)=log_{5}(16-a^2x^2)), (x^2+y^2=6x+4y):} имеет ровно два различных решения

Ответ: (-infty; -3/2) uu (-3/2; -2/3] uu {0} uu [2/3; 3/2) uu (3/2; +infty)
Примечание:
Найти все значения параметра a, при каждом из которых система уравнений {(log_{5}(16 -y^2) =log_{5}(16 -a^2x^2)), (x^2+ y^2= 6x+ 4y):} имеет ровно два различных решения ! ЕГЭ 2020 математика профильный уровень Задание 18 система # Задача 18 на систему уравнений из реального ЕГЭ 10.07.2020 (прототип 18.8) # Решение Елены Ильиничны Хажинской # Графический - способ, Задача-аналог (Аналитический способ):   2371  

Аналитическое Решение


Ключевые слова:
Новое на сайте
11/07/2025 19:30 ДВИ в МГУ 2025 по математике 🔥 (обновляется...)
ДВИ в МГУ 2025 по математике 🔥 (обновляется...)
Решения основных потоков дополнительных вступительных испытаний в МГУ 2025 по математике +пробники и решения вариантов прошлых лет
05/06/2025 19:00 Эксперты ЕГЭ по математике о проверке основной волны 2025
Эксперты ЕГЭ по математике о проверке основной волны 2025
Комментарии экспертов по итогам проверки ЕГЭ по математике профильного уровня.
27/05/2025 20:25 ЕГЭ по математике основная волна 2025
ЕГЭ по математике основная волна 2025
Разбор вариантов ЕГЭ по математике профильного уровня 26 и 27 мая 2025 года Восток, Центр, Запад, решения и ответы
К началу страницы