Конечная возрастающая последовательность a1, a2, ..., an состоит из n>=3 различных натуральных чисел

Тренировочная работа №3 по МАТЕМАТИКЕ Статград 29.01.2020 Запад Вариант МА1910309 Задание 19 № задачи в базе 2063


Конечная возрастающая последовательность a1, a2, ..., an состоит из n>=3 различных натуральных чисел, причём при всех натуральных k <= n-2 выполнено равенство 3a_(k+2)=4a_(k+1)-a_k. а) Приведите пример такой последовательности при n=5. б) Может ли в такой последовательности при некотором n>=3 выполняться равенство 2a_n=3a_2-a_1? в) Какое наименьшее значение может принимать a1, если a_n=315

Ключевые слова:

Примечание:
Конечная возрастающая последовательность a1, a2, ..., an состоит из n>=3 различных натуральных чисел ! Тренировочная работа №3 по МАТЕМАТИКЕ Статград 29.01.2020 Запад Вариант МА1910309 Задание 19





🔥 Оценки экспертов решений задания 19 ЕГЭ по математике профильного уровня. Сканы реальных работ прошлых лет


Новое на сайте
27/05/2025 20:25 ЕГЭ по математике основная волна 2025 🔥 (обновляется...)
ЕГЭ по математике основная волна 2025 🔥 (обновляется...)
Разбор вариантов ЕГЭ по математике профильного уровня 26 и 27 мая 2025 года Восток, Центр, Запад, решения и ответы
К началу страницы