Окружность с центром в точке O пересекает каждую из сторон трапеции ABCD в двух точках. Четыре получившиеся хорды окружности равны

36 вариантов ФИПИ Ященко 2022 Вариант 33 Задание 16 № задачи в базе 1285


Окружность с центром в точке O пересекает каждую из сторон трапеции ABCD в двух точках. Четыре получившиеся хорды окружности равны. а) Докажите, что биссектрисы всех углов трапеции пересекаются в одной точке. б) Найдите высоту трапеции, если окружность пересекает боковую сторону AB в точках K и L так, что AK=19, KL=12, LB=3

Ответ: 30
Ключевые слова:
Примечание:
Окружность с центром в точке O пересекает каждую из сторон трапеции ABCD в двух точках. Четыре получившиеся хорды окружности равны ! 36 вариантов ФИПИ Ященко 2022 Вариант 33 Задание 16 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 23 Задание 16 # 36 вариантов ФИПИ Ященко 2019 ВАРИАНТ 3 Задание 16 # Задача - Аналог   1518  

maybe

Новое на сайте
2/14/2024 8:24:00 PM Тренировочная работа № 3 по математике 11 класс 🔥🔥 СтатГрад 14-02-2024
Тренировочная работа № 3 по математике 11 класс 🔥🔥 СтатГрад 14-02-2024
Разбор варианта МА2310309 профильного уровня, ответы и подробные решения
К началу страницы