Задача 16 на две окружности из реального ЕГЭ 2017 вариант 4

№ задачи в базе 285


Две окружности касаются внутренним образом в точке A, причём меньшая окружность проходит через центр большей O. Диаметр BC большей окружности вторично пересекает меньшую в точке M, отличной от A. Лучи AO и AM вторично пересекают большую окружность в точках P и Q соответственно. Точка C лежит на дуге AQ большей окружности, не содержащей точку P. Доказать, что PQ параллельна BC. Sin < AOC=sqrt15/4. Прямые PC и AQ пересекаются в точке K. Найти отношение QK:KA

Ключевые слова:

Примечание:
Задача 16 на две окружности из реального ЕГЭ 2017 вариант 4





🔥 Оценки экспертов решений задания 17 ЕГЭ по математике профильного уровня. Сканы реальных работ прошлых лет


Новое на сайте
11/07/2025 19:30 ДВИ в МГУ 2025 по математике
ДВИ в МГУ 2025 по математике
Решения основных потоков дополнительных вступительных испытаний в МГУ 2025 по математике +пробники и решения вариантов прошлых лет
05/06/2025 19:00 Эксперты ЕГЭ по математике о проверке основной волны 2025
Эксперты ЕГЭ по математике о проверке основной волны 2025
Комментарии экспертов по итогам проверки ЕГЭ по математике профильного уровня.
27/05/2025 20:25 ЕГЭ по математике основная волна 2025
ЕГЭ по математике основная волна 2025
Разбор вариантов ЕГЭ по математике профильного уровня 26 и 27 мая 2025 года Восток, Центр, Запад, решения и ответы
К началу страницы