Тренировочная работа №4 11 класс 13.03.2019 Вариант МА10409 Задание 16

№ задачи в базе 1508


Дан треугольник ABC со сторонами AC = 30 , BC = 40 и AB = 50. Вписанная в него окружность с центром I касается стороны BC в точке L, M - середина BC , AP - биссектриса треугольника ABC , O -центр описанной около него окружности. а) Докажите, что P - середина отрезка LM. б) Пусть прямые OI и AC пересекаются в точке K , а продолжение биссектрисы AP пересекает описанную окружность в точке Q. Найдите площадь четырёхугольника OKCQ

Ключевые слова:

Примечание:
Тренировочная работа №4 11 класс 13.03.2019 Вариант МА10409 Задание 16





🔥 Оценки экспертов решений задания 17 ЕГЭ по математике профильного уровня. Сканы реальных работ прошлых лет


Новое на сайте
11/07/2025 19:30 ДВИ в МГУ 2025 по математике 🔥 (обновляется...)
ДВИ в МГУ 2025 по математике 🔥 (обновляется...)
Решения основных потоков дополнительных вступительных испытаний в МГУ 2025 по математике +пробники и решения вариантов прошлых лет
05/06/2025 19:00 Эксперты ЕГЭ по математике о проверке основной волны 2025
Эксперты ЕГЭ по математике о проверке основной волны 2025
Комментарии экспертов по итогам проверки ЕГЭ по математике профильного уровня.
27/05/2025 20:25 ЕГЭ по математике основная волна 2025
ЕГЭ по математике основная волна 2025
Разбор вариантов ЕГЭ по математике профильного уровня 26 и 27 мая 2025 года Восток, Центр, Запад, решения и ответы
К началу страницы