График задачи Решите неравенство: log2 (32x) / log2 x -5+ log2 x-5 / log2 (32x) >= log2 x16+18 / log2 2 x -25

Решите неравенство: log_{2}(32x)/(log_{2}(x) -5)+ (log_{2}(x)-5)/ log_{2}(32x)>= (log_{2}(x^16)+18)/((log_{2}(x))^2-25)

Ответ: (0; 1/32) uu {16} uu (32; +infty)
Примечание:
Решите неравенство: log2 (32x) / log2 x -5+ log2 x-5 / log2 (32x) >= log2 x16+18 / log2 2 x -25

Аналитическое Решение


Ключевые слова:
Новое на сайте
05/06/2025 19:00 Эксперты ЕГЭ по математике о проверке основной волны 2025
Эксперты ЕГЭ по математике о проверке основной волны 2025
Комментарии экспертов по итогам проверки ЕГЭ по математике профильного уровня.
27/05/2025 20:25 ЕГЭ по математике основная волна 2025 🔥 (обновляется...)
ЕГЭ по математике основная волна 2025 🔥 (обновляется...)
Разбор вариантов ЕГЭ по математике профильного уровня 26 и 27 мая 2025 года Восток, Центр, Запад, решения и ответы
23/04/2025 20:25 СтатГрад Тренировочная работа № 5 по математике 11 класс 23-04-2025
СтатГрад Тренировочная работа № 5 по математике 11 класс 23-04-2025
Разбор заданий вариантов МА2410509, МА2410511 профильного уровня, ответы и подробные решения
К началу страницы