а) Решите уравнение 2^5sin5x +6^ 1+sin5x = 24^sin5x +3 8^1/3+sin5x

36 вариантов ФИПИ Ященко 2023 Вариант 5 Задание 12 № задачи в базе 3505


а) Решите уравнение 2^(5sin(5x))+6^(1+sin(5x))=24^(sin(5x))+3*8^(1/3+sin(5x)) б) Найдите все корни этого уравнения, принадлежащие отрезку [(5pi)/2; (7pi)/2].

Ключевые слова:

Примечание:
а) Решите уравнение 2^5sin5x +6^ 1+sin5x = 24^sin5x +3 8^1/3+sin5x ! 36 вариантов ФИПИ Ященко 2023 Вариант 5 Задание 12





🔥 Оценки экспертов решений задания 13 с уравнениями ЕГЭ по математике профильного уровня. Сканы реальных работ прошлых лет


Новое на сайте
11/07/2025 19:30 ДВИ в МГУ 2025 по математике 🔥 (обновляется...)
ДВИ в МГУ 2025 по математике 🔥 (обновляется...)
Решения основных потоков дополнительных вступительных испытаний в МГУ 2025 по математике +пробники и решения вариантов прошлых лет
05/06/2025 19:00 Эксперты ЕГЭ по математике о проверке основной волны 2025
Эксперты ЕГЭ по математике о проверке основной волны 2025
Комментарии экспертов по итогам проверки ЕГЭ по математике профильного уровня.
27/05/2025 20:25 ЕГЭ по математике основная волна 2025
ЕГЭ по математике основная волна 2025
Разбор вариантов ЕГЭ по математике профильного уровня 26 и 27 мая 2025 года Восток, Центр, Запад, решения и ответы
К началу страницы