а) Решите уравнение 2^5sin5x +6^ 1+sin5x = 24^sin5x +3 8^1/3+sin5x

36 вариантов ФИПИ Ященко 2023 Вариант 5 Задание 12 № задачи в базе 3505


а) Решите уравнение 2^(5sin(5x))+6^(1+sin(5x))=24^(sin(5x))+3*8^(1/3+sin(5x)) б) Найдите все корни этого уравнения, принадлежащие отрезку [(5pi)/2; (7pi)/2].

Ответ: аа) (pin)/5, n in Z; бб) (13pi)/5; (14pi)/5; 3pi; (16pi)/5; (17pi)/5
Ключевые слова:

Примечание:
а) Решите уравнение 2^5sin5x +6^ 1+sin5x = 24^sin5x +3 8^1/3+sin5x ! 36 вариантов ФИПИ Ященко 2023 Вариант 5 Задание 12


🔥 Оценки экспертов решений задания 13 с уравнениями ЕГЭ по математике профильного уровня. Сканы реальных работ прошлых лет


Новое на сайте
11/6/2024 12:15:00 PM 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
10/24/2024 10:25:00 PM 30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
Решаем задачи из пособия 2025 года "Математика 30 вариантов ЕГЭ Базовый уровень ФИПИ школе Ященко"
К началу страницы