Окружности S1 и S2 пересекаются в точках A и B, причём центр окружности S2 лежит на окружности S1

228 вариант Ларина ОГЭ (уровень 2) Задание 25 № задачи в базе 1874


Окружности S1 и S2 пересекаются в точках A и B, причём центр окружности S2 лежит на окружности S1. Хорда OC окружности S1 пересекает окружность S2 в точке D. Докажите, что D – точка пересечения биссектрис треугольника ABC

Ответ:
Ключевые слова:

Примечание:
Окружности S1 и S2 пересекаются в точках A и B, причём центр окружности S2 лежит на окружности S1 ! 228 вариант Ларина ОГЭ (уровень 2) Задание 25



Новое на сайте
11/6/2024 12:15:00 PM 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ 🔥
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
10/24/2024 10:25:00 PM 30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
30 вариантов ЕГЭ 2025 ФИПИ школе Ященко База
Решаем задачи из пособия 2025 года "Математика 30 вариантов ЕГЭ Базовый уровень ФИПИ школе Ященко"
10/24/2024 8:25:00 PM Математика 36 вариантов ОГЭ 2025 ФИПИ
Математика 36 вариантов ОГЭ 2025 ФИПИ
Решаем задания типовых экзаменационных вариантов пособия 36 вариантов ОГЭ 2025 ФИПИ школе под редакцией Ященко И В
К началу страницы