Конечная возрастающая последовательность a1, a2, ..., an состоит из n>=3 различных натуральных чисел

Тренировочная работа №3 по МАТЕМАТИКЕ Статград 29.01.2020 Запад Вариант МА1910309 Задание 19 № задачи в базе 2063


Конечная возрастающая последовательность a1, a2, ..., an состоит из n>=3 различных натуральных чисел, причём при всех натуральных k <= n-2 выполнено равенство 3a_(k+2)=4a_(k+1)-a_k. а) Приведите пример такой последовательности при n=5. б) Может ли в такой последовательности при некотором n>=3 выполняться равенство 2a_n=3a_2-a_1? в) Какое наименьшее значение может принимать a1, если a_n=315

Ключевые слова:

Примечание:
Конечная возрастающая последовательность a1, a2, ..., an состоит из n>=3 различных натуральных чисел ! Тренировочная работа №3 по МАТЕМАТИКЕ Статград 29.01.2020 Запад Вариант МА1910309 Задание 19





🔥 Оценки экспертов решений задания 19 ЕГЭ по математике профильного уровня. Сканы реальных работ прошлых лет


Новое на сайте
23/04/2025 20:25 СтатГрад Тренировочная работа № 5 по математике 11 класс 23-04-2025
СтатГрад Тренировочная работа № 5 по математике 11 класс 23-04-2025
Разбор заданий вариантов МА2410509, МА2410511 профильного уровня, ответы и подробные решения
28/03/2025 21:00 Досрочный ЕГЭ по математике 2025
Досрочный ЕГЭ по математике 2025
Задания вариантов ЕГЭ профильного уровня досрочной волны 28 марта 2025 года с решениями
16/03/2025 09:05 Тренажёр первой части ЕГЭ
Тренажёр первой части ЕГЭ
Решайте на время задания первой части ЕГЭ профильного уровня по математике NEW
26/02/2025 12:15 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
К началу страницы