Окружность с центром в точке O пересекает каждую из сторон трапеции ABCD в двух точках. Четыре получившиеся хорды окружности равны

36 вариантов ФИПИ Ященко 2022 Вариант 33 Задание 16 № задачи в базе 1285


Окружность с центром в точке O пересекает каждую из сторон трапеции ABCD в двух точках. Четыре получившиеся хорды окружности равны. а) Докажите, что биссектрисы всех углов трапеции пересекаются в одной точке. б) Найдите высоту трапеции, если окружность пересекает боковую сторону AB в точках K и L так, что AK=19, KL=12, LB=3

Ключевые слова:

Примечание:
Окружность с центром в точке O пересекает каждую из сторон трапеции ABCD в двух точках. Четыре получившиеся хорды окружности равны ! 36 вариантов ФИПИ Ященко 2022 Вариант 33 Задание 16 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 23 Задание 16 # 36 вариантов ФИПИ Ященко 2019 ВАРИАНТ 3 Задание 16 # Задача - Аналог   1518  





🔥 Оценки экспертов решений задания 17 ЕГЭ по математике профильного уровня. Сканы реальных работ прошлых лет


Новое на сайте
23/04/2025 20:25 СтатГрад Тренировочная работа № 5 по математике 11 класс 23-04-2025
СтатГрад Тренировочная работа № 5 по математике 11 класс 23-04-2025
Разбор заданий вариантов МА2410509, МА2410511 профильного уровня, ответы и подробные решения
28/03/2025 21:00 Досрочный ЕГЭ по математике 2025
Досрочный ЕГЭ по математике 2025
Задания вариантов ЕГЭ профильного уровня досрочной волны 28 марта 2025 года с решениями
16/03/2025 09:05 Тренажёр первой части ЕГЭ
Тренажёр первой части ЕГЭ
Решайте на время задания первой части ЕГЭ профильного уровня по математике NEW
26/02/2025 12:15 36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ
36 вариантов ЕГЭ 2025 ФИПИ школе Ященко ПРОФИЛЬ
Решаем задачи из пособия 2025 года "Математика 36 вариантов ЕГЭ Профильный уровень ФИПИ школе Ященко"
К началу страницы