поиск

Усложнённые версии вариантов ОГЭ Ларина (2-го уровня) cтраница 1

Skip Navigation Links > Математика > Ларин варианты > ОГЭ(ГИА) 9 класс Ларин > Усложнённые версии вариантов ОГЭ Ларина (2-го уровня)
FirstPrevСтраница 1 из 8 (Кол-во задач:79)[1]2348NextLast
Очистить все фильтры
ID 
Условие задачи 
Примечание 
Open filter row popup menu
Open filter row popup menu
Open filter row popup menu
 
2510Вычислить root(3)(root(3)(2)-1)/(root(3)(1/9)-root(3)(2/9)+root(3)(4/9))
Решение
257 вариант Ларина ОГЭ (уровень 2) Задание 8...X
2276Касательная в точке A к описанной окружности треугольника ABC пересекает продолжение стороны BC за точку B в точке K. Известно, что L – середина AC, MB=5, а точка M на отрезке AB такова, что /_AKM=/_CKL. Найдите MA
Решение
Касательная в точке A к описанной окружности треугольника ABC пересекает продолжение стороны BC за точку B в точке K ! 254 вариант Ларина ОГЭ (уровень 2) Задание 17...X
2268Решите уравнение 5x^2+35x+2sqrt(x^2+7x+1)=46. Если корней несколько, запишите их в порядке возрастания без пробелов и других разделительных символов
Решение     График
Решите уравнение 5x^2 + 35x + 2sqrt(x^2 + 7x +1) =46 ! 254 вариант Ларина ОГЭ (уровень 2) Задание 9...X
2267Найдите значение выражения 8/a-5/(2a-3b)-(10a+15b)/(9b^2-4a^2) при иa=0.04 и b=sqrt(3-sqrt5)
Решение
Найдите значение выражения 8/a -5 / (2a - 3b) -(10a + 15b) / (9b^2 - 4a^2) ! 254 вариант Ларина ОГЭ (уровень 2) Задание 13...X
2266В прямоугольном треугольнике проведена высота из вершины прямого угла. На этой высоте как на диаметре построена окружность. Известно, что эта окружность высекает на катетах отрезки, равные 12 и 18. Найдите меньший катет
Решение
В прямоугольном треугольнике проведена высота из вершины прямого угла ! 254 вариант Ларина ОГЭ (уровень 2) Задание 16...X
2265На сторонах BC и CD параллелограмма ADCD построены внешним образом правильные треугольники BCK и DCL. Найдите градусную меру угла AKL
Решение
На сторонах BC и CD параллелограмма ADCD построены внешним образом правильные треугольники BCK и DCL ! 254 вариант Ларина ОГЭ (уровень 2) Задание 18...X
2264Дан треугольник со сторонами 3, 4 и 5. Построены три круга радиусами 1 с центрами в вершинах треугольника. Найдите суммарную площадь S частей кругов, заключённых внутри треугольника. В ответе запишите значение выражения S/pi
Решение
Дан треугольник со сторонами 3, 4 и 5. Построены три круга радиусами 1 с центрами в вершинах треугольника ! 254 вариант Ларина ОГЭ (уровень 2) Задание 19...X
2263Укажите решение системы неравенств {(abs(x-1)+abs(x+1) > 4), (sqrt(6x-x^2-5)/(3-x) >= 0):}.
Решение     График
Укажите решение системы неравенств {(abs(x -1) + abs(x+1) > 4), (sqrt(6x - x^2 -5) / (3-x) >= 0):} ! 254 вариант Ларина ОГЭ (уровень 2) Задание 15...X
2203Найдите значение выражения (3sqrt(242)-6sqrt(200)+7sqrt(8))^2
Решение
Найдите значение выражения (3sqrt(242) -6sqrt(200) + 7sqrt(8)) ^2 ! 249 вариант Ларина ОГЭ (уровень 2) Задание 8...X
2202Решите систему { (abs(x) < 2/5), (3x-1+x^2-x^3+x^4-x^5+...=2/3) :}
Решение
Решите систему { (abs(x) < 2/5), (3x-1 + x^2-x^3+ x^4-x^5+...=2/3) :} ! 249 вариант Ларина ОГЭ (уровень 2) Задание 12...X
Показать ещё...
Show filter builder dialog Clear